Experimental Study on MICP Aqueous Solution under the Action of Different Organic Substrates

Author:

Zheng Huai-miao12,Wu Ling-ling12ORCID,Tong Kai-wen3,Hu Lin12,Yu Qing12,He Gui-cheng12,Zhang Zhi-jun12ORCID

Affiliation:

1. School of Resource & Environment and Safety Engineering, University of South China, 421001 Hengyang, China

2. Hunan Province & Hengyang City Engineering Technology Research Center for Disaster Prediction and Control on Mining Geotechnical Engineering, 421001 Hengyang, China

3. University of Chinese Academy of Sciences, 100049 Beijing, China

Abstract

The precipitation rate and cementation strength of calcium carbonate crystals during the process of microorganism-induced calcium carbonate precipitation (MICP) are key factors that affect the application effect of this technology. In order to improve the quality of calcium carbonate formation in the MICP process, egg white protein with a volume fraction of 20%, bovine serum albumin with a mass fraction of 0.3%, sucrose with a mass fraction of 5%, bamboo leaves with a mass concentration of 25 g/L, and bamboo leaf-magnesium chloride (Mg2+/Ca2+=4:1) were added during the experiment of different groups of MICP solutions. The results of the solution test study showed that there was no obvious lag period for bacterial growth under the action of organic matrix. The concentration of bacteria in the reaction solution was higher under the action of sucrose and egg white. The conversion rate of Ca2+ under the action of egg white was the fastest, which was about 2.5 times higher than that of the control group. After 14 days of grouting reaction, it was found that the proportion of calcite-type calcium carbonate produced under the action of egg white was the highest, and the Ca element accounted for 66.24% in the solidified material. Sucrose was second; bovine serum albumin was the lowest. The calcium carbonate crystals generated by the control of each organic matrix had a high degree of pore size matching with the tailings under a dry-wet cycle. The structural characteristics of the calcium carbonate crystals, such as crystal form, morphology, and particle size, were mainly due to the interaction between the organic matrix and the calcium carbonate crystals. This study proves that the addition of the organic matrix can improve the formation rate and crystal structure of calcium carbonate during MICP, thus providing a new reference for the development of MICP technology.

Funder

Hunan Province & Hengyang City Engineering Technology Research Center for Disaster Prediction and Control on Mining Geotechnical Engineering

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3