Curcumin Alleviates D-Galactose-Induced Cardiomyocyte Senescence by Promoting Autophagy via the SIRT1/AMPK/mTOR Pathway

Author:

Yang Lei12ORCID,Shi Jun3ORCID,Wang Xiaowan4ORCID,Zhang Rong5ORCID

Affiliation:

1. Department of Geriatrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China

2. Department of Emergency, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China

3. Department of Cardiology, Shi Dong Hospital Affiliated to University of Shanghai for Science and Technology, 999 Shiguang Road, Shanghai 200438, China

4. Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China

5. Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China

Abstract

Oxidative stress and impaired autophagy are the hallmarks of cardiac aging. However, there are no specific drugs available to prevent cardiac aging. Curcumin is a natural polyphenolic drug with antioxidant, antiaging, and autophagy-promoting effects. Here, we describe the preventive role of Curcumin in cardiac aging through the induction of autophagy and the restoration of autophagy via the SIRT1/AMPK/mTOR pathway. The number of cells positive for senescence-associated β-galactosidase, P53, P16, and intracellular ROS increased significantly in senescent cardiomyocytes, stimulated using D-galactose. Curcumin reversed this effect in a dose-dependent manner. Curcumin-induced autophagy increased the expression of SIRT1and phosphorylated AMPK and decreased phosphorylated mTOR in a dose-dependent manner. SIRT1-siRNA-mediated knockdown inhibited the antioxidation, antiaging, the promotion of autophagy, and the SIRT1/AMPK/mTOR pathway activation effect of curcumin. Therefore, curcumin could be an effective anticardiac aging drug.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3