A Positive Feedback Loop of Profilin-1 and RhoA/ROCK1 Promotes Endothelial Dysfunction and Oxidative Stress

Author:

Li Xu1,Liu Jianjun1,Chen Bin2,Fan Longhua1ORCID

Affiliation:

1. Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 200032, China

2. Institute of Vascular Surgery, Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China

Abstract

Vascular endothelial dysfunction is considered critical development in the progression of cardiovascular events and is associated with vascular damage and oxidative stress. Previous studies have shown that profilin-1 could be induced by advanced glycation end products (AGEs) and contributes to vascular hyperpermeability; however, the mechanisms are not fully understood. In this study, we sought to assess whether reactive oxygen species (ROS) were involved in profilin-1-mediated RhoA/ROCK1 signaling. Treatment with AGEs significantly induced the expression of profilin-1 and ROS production in human umbilical vein endothelial cells (HUVECs), whereas knockdown of profilin-1 diminished AGE-induced RhoA and ROCK1 activation and ROS production. Moreover, ectopic overexpression of profilin-1 also increased RhoA and ROCK1 activation and ROS production under low AGE concentration. Furthermore, blockage of RhoA/ROCK1 with the inhibitors CT04 and Y27632 significantly attenuated the profilin-1-mediated cell damage and ROS production. Additionally, ROS inhibition resulted in a significant decrease in profilin-1-mediated RhoA/ROCK1 expression, suggesting that the regulation of RhoA/ROCK1 signaling was partly independent of ROS. Taken together, these results suggested that the RhoA/ROCK1 pathway activated by excessive ROS is responsible for profilin-1-mediated endothelial damage.

Funder

Shanghai Municipal Health Bureau

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3