Unveiling the m6A Methylation Regulator Links between Prostate Cancer and Periodontitis by Transcriptomic Analysis

Author:

Ding Dexin1ORCID,Liu Guobin1,Gao Jianing1,Cao Muyang1ORCID

Affiliation:

1. Department of Urology Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China

Abstract

Objective. To identify the N6-methyladenosine (m6A) methylation regulator genes linking prostate adenocarcinoma (PRAD) and periodontitis (PD). Materials and Methods. PD and TCGA-PRAD GEO datasets were downloaded and analyzed through differential expression analysis to determine the differentially expressed genes (DEGs) deregulated in both conditions. Twenty-three m6A RNA methylation-related genes were downloaded in total. The m6A-related genes that overlapped between PRAD and PD were identified as crosstalk genes. Survival analysis was performed on these genes to determine their prognostic values in the overall survival outcomes of prostate cancer. The KEGG pathways were the most significantly enriched by m6A-related crosstalk genes. We also performed lasso regression analysis and univariate survival analysis to identify the most important m6A-related crosstalk genes, and a protein-protein interaction (PPI) network was built from these genes. Results. Twenty-three m6A methylation-related regulator genes were differentially expressed and deregulated in PRAD and PD. Among these, seven (i.e., ALKBH5, FMR1, IGFBP3, RBM15B, YTHDF1, YTHDF2, and ZC3H13) were identified as m6A-related cross-talk genes. Survival analysis showed that only the FMR1 gene was a prognostic indicator for PRAD. All other genes had no significant influence on the overall survival of patients with PRAD. Lasso regression analysis and univariate survival analysis identified four m6A-related cross-talk genes (i.e., ALKBH5, IGFBP3, RBM15B, and FMR1) that influenced risk levels. A PPI network was constructed from these genes, and 183 genes from this network were significantly enriched in pathogenic Escherichia coli infection, p53 signaling pathway, nucleocytoplasmic transport, and ubiquitin-mediated proteolysis. Conclusion. Seven m6A methylation-related genes (ALKBH5, FMR1, IGFBP3, RBM15B, YTHDF1, YTHDF2, and ZC3H13) were identified as cross-talk genes between prostate cancer and PD.

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Reference77 articles.

1. The risk factors of prostate cancer and its prevention: a literature review;N. R. Perdana;Acta Medica Indonesiana,2017

2. Periodontal disease and the risk of prostate cancer: a meta-analysis of cohort studies

3. Association between oral pathogens and prostate cancer: building the relationship;A. P. B. da Silva;American Journal of Clinical and Experimental Urology,2019

4. Presence of specific periodontal pathogens in prostate gland diagnosed with chronic inflammation and adenocarcinoma;L. S. C. Alluri;Cureus,2021

5. Inflammation as a Driver of Prostate Cancer Metastasis and Therapeutic Resistance

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3