CLOCK Promotes Endothelial Damage by Inducing Autophagy through Reactive Oxygen Species

Author:

Tang Xiao1,Lin Changpo1,Guo Daqiao1,Qian Ruizhe2,Li Xiaobo2,Shi Zhenyu1,Liu Jianjun3,Li Xu3,Fan Longhua3ORCID

Affiliation:

1. Institute of Vascular Surgery, Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China

2. Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China

3. Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 200032, China

Abstract

A number of recent studies have implicated that autophagy was activated by reactive oxygen species (ROS). Our previous report indicated that CLOCK increased the accumulation of ROS under hypoxic conditions. In this study, we investigated the mechanisms by which CLOCK mediated endothelial damage, focusing on the involvement of oxidative damage and autophagy. Overexpression of CLOCK in human umbilical vein endothelial cells (HUVECs) showed inhibition of cell proliferation and higher autophagosome with an increased expression of Beclin1 and LC3-I/II under hypoxic conditions. In contrast, CLOCK silencing reversed these effects. Interestingly, pretreatment with 3-methyladenine (3-MA) resulted in the attenuation of CLOCK-induced cell autophagy and but did not influence the production of intracellular reactive oxygen species (ROS). Furthermore, Tiron (4,5-dihydroxy-1,3-benzene disulfonic acid-disodium salt), a ROS scavenger, significantly attenuated CLOCK-induced cell autophagy. In addition, we found that overexpression of CLOCK had no significant effects on the production of ROS and expression of Beclin1 and LC3-I/II under normoxic conditions in HUVEC. In this present investigation, our results suggested a novel mechanism of action of CLOCK in HUVECs, opening up the possibility of targeting CLOCK for the treatment of vascular diseases.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3