The Anticancer Mechanisms of Scutellaria barbata against Lung Squamous Cell Carcinoma

Author:

Li Feng1ORCID,Fu Xianxian2,Liu Lingli1ORCID,Wei Xiaobin2ORCID

Affiliation:

1. Department of Clinical Laboratory, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311 Hainan, China

2. Department of Clinical Laboratory, Haikou Affiliated Hospital of Central South University, Xiangya School of Medicine, Haikou 570208 Hainan, China

Abstract

Objective. Scutellaria barbata (S. barbata) is a Chinese traditional medicinal crop with anti-inflammatory as well as anticancer properties. To explore the anticancer mechanisms of functional monomers of S. barbata against lung squamous cell carcinoma (LUSC), a network pharmacology approach and molecular docking were utilized. Methods. The expression profile of genes encoding functional monomer components in S. barbata was obtained from the Traditional Chinese Medicine Systems Pharmacology platform (TCMSP) database. Expression data of LUSC-related genes were acquired from DisGeNET, GeneCards, OMIM, DrugBank, and TTD databases. The target genes of S. barbata that confer anticancer effects against LUSC were obtained by considering the intersecting genes between S. barbata target genes and LUSC-related genes. The potential regulatory pathways enriched in these intersected genes were identified using the KOBAS database, and Gene Ontology (GO) function enrichment analysis was performed using the online tool DAVID. The relationship network of S. barbata functional monomer components-action targets-disease-pathways was established using Cytoscape 3.8.2, and the protein-protein interaction network of those intersected genes was established using the STRING database. Finally, the hub genes were screened by using CytoNCA, a plug-in of Cytoscape, and hub gene expressions in LUSC were evaluated via the Gene Expression Profiling Interactive Analysis (GEPIA) database. AutoDockTools and PyMOL software were employed to verify the molecular docking on disease target proteins and drug functional molecules. Results. In S. barbata, 104 target genes and 20 hub genes encoding functional components against LUSC were screened out, six of which were significantly differentially expressed between LUSC samples and normal tissue samples in the GEPIA database. Here, GO analysis illustrated the involvement of these genes in the signal transduction and positive regulation of transcription from RNA polymerase II promoter and negative regulation of apoptosis, while KEGG pathway enrichment analysis demonstrated that these genes were mainly involved in several pathways, for instance, AGE-RAGE, PI3K-Akt, p53, and MAPK signaling pathway. There are four main functional components docking with six key target proteins, all of which have strong binding activity. Conclusions. We predicted the molecular mechanisms and signaling pathways of genes encoding functional components in S. barbata against LUSC. These discoveries offer novel understanding for further study, laying a scientific foundation for the production of synthetic monomer components of S. barbata.

Funder

Hainan Provincial Clinical Medical Center

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3