Mechanism of Salvia miltiorrhiza Bge. for the Treatment of Ischemic Stroke Based on Bioinformatics and Network Pharmacology

Author:

Wu Jiaqi1ORCID,Li Ming2,Li Ang3,Ji Xunming12ORCID

Affiliation:

1. Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China

2. China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China

3. Department of Biomedical Engineering, Columbia University, New York, NY, USA

Abstract

Background and Purpose. A large number of pharmacological experiments have proved that many components of Salvia miltiorrhiza Bge. have neuroprotective, anti-inflammatory, and antioxidant effects. Middle cerebral artery occlusion (MCAO) models treated with Salvia miltiorrhiza Bge. can significantly reduce the infarct size and change the pathological morphology of brain tissue. However, not only the internal mechanism but also the material basis is unclear to researchers. Our research aims to elucidate the potential effective material basis and molecular internal mechanism between Salvia miltiorrhiza Bge. and stroke. Methods. In this study, SymMap was used to screen the 50 bioactive scored components and 65 putative targets of Salvia miltiorrhiza Bge., and their targets were standardized using the UniProt platform. The disease targets related to stroke were collected by comparative toxicogenomics database (CTD), GeneCards, and quantitative structure-activity relationships-TargetNet (QSAR-TargetNet). Thereafter, the protein-protein interaction (PPI) network was constructed using the STRING platform and visualized by Cytoscape (3.8.2) software. Then, the Metascape platform was used to analyze the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Cytoscape (3.7.2) software was also used to construct the network of the “herb-component-target-pathway.” We found that Tanshinol B, Tanshinol A, Przewaquinone C, Tanshinone II, and other main components of Salvia miltiorrhiza Bge. may regulate neurotransmitters and neurological function. Therefore, we speculate Salvia miltiorrhiza Bge. has a neuroprotective effect. For further verification, potential core targets (STAT3, MMP2, ESR1, TERT, and MMP9 proteins) for ischemic stroke and core active ingredients (Tanshinol A, Tanshinol B, Tanshinone II A, and Przewaquinone C) for Salvia miltiorrhiza Bge. were further verified by molecular docking. Results. Our findings revealed that Tanshinol A, Tanshinol B, Tanshinone II A, and Przewaquinone C as the main component of Salvia miltiorrhiza Bge. may have a neuroprotective effect against ischemic stroke, which provides a new understanding for the development of therapies for the prevention and treatment of ischemic stroke.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Reference37 articles.

1. Stroke Prevention Strategies in the Developing World

2. Salvia miltiorrhiza Bunge (Danshen) extract attenuates permanent cerebral ischemia through inhibiting platelet activation in rats

3. Observation on therapeutic efficacy of TCM in treating hemorrhagic stroke;Q. Hu;Chinese Journal of Integrated Traditional and Western Medicine in Intensive and Critical Care,1998

4. A network-based method for mechanistic investigation and neuroprotective effect on treatment of Tanshinone I against ischemic stroke in mouse;A. Jl;Journal of Ethnopharmacology,2021

5. Cryptotanshinone possesses therapeutic effects on ischaemic stroke through regulating STAT5 in a rat model,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3