Comparative Analysis of Proliferation and Differentiation Potentials of Stem Cells from Inflamed Pulp of Deciduous Teeth and Stem Cells from Exfoliated Deciduous Teeth

Author:

Yu Shi12,Diao Shu12,Wang Jinsong13,Ding Gang4,Yang Dongmei2,Fan Zhipeng1

Affiliation:

1. Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China

2. Department of Pediatric Dentistry, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China

3. Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing 100069, China

4. Department of Stomatology, Yidu Central Hospital, Weifang Medical University, No. 4138 Linglong Mountain South Road, Qinzhou 262500, China

Abstract

Stem cells isolated from exfoliated deciduous teeth (SHEDs) are highly capable of proliferation and differentiation, and they represent good cell sources for mesenchymal stem cell- (MSC-) mediated dental tissue regeneration, but the supply of SHEDs is limited. A previous study found that stem cells could be isolated from inflamed tissues, but it is unknown whether primary dental pulp diagnosed with irreversible pulpitis might contain stem cells with appropriate tissue regeneration capacity. In this study, we aimed to isolate stem cells from both inflamed pulps of deciduous teeth (SCIDs) and SHEDs from Chinese children and to compare their proliferation and differentiation potentials. Our results showed that SCIDs were positive for cell surface markers, including CD105, CD90, and CD146, and they had high proliferation ability and osteogenic, adipogenic, and chondrogenic differentiation potentials. There was no significant difference in proliferation and differentiation potentials between SCIDs and SHEDs. The mRNA of inflammatory factors, including IL-1β, IL-6, and TNF-α, was expressed at similar levels in SCIDs and SHEDs, but SCIDs secreted more TNF-αprotein. In conclusion, ourin vitroresults showed that SCIDs have proliferation and differentiation potentials similar to those of SHEDs. Thus, SCIDs represent a new potentially applicable source for MSC mediated tissue regeneration.

Funder

National Science Council

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3