Aralia armata (Wall.) Seem Improves Intimal Hyperplasia after Vascular Injury by Downregulating the Wnt3α/Dvl-1/β-Catenin Pathway

Author:

Zhao Xiangpei1,Huang Jinchang2,Mo Zhenyu2,Wei Jiangcun1,Zhong Chuanmei1,Teng Hongli1ORCID

Affiliation:

1. Department of Technology, Guangxi International Zhuang Medicine Hospital, Nanning 530201, China

2. Department of Academic Affairs, Ruikang Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning 530200, China

Abstract

The aim of the study is to examine the mechanism of Aralia armata (Wall.) Seem (AAS) in improving intimal hyperplasia after vascular injury in rats. Rats with femoral artery injury were randomly divided into three groups: the model group, AAS low-dose group (40 mg/kg), and AAS high-dose group (80 mg/kg). The sham operation group was used as a control group. HE staining was used to observe the changes in femoral artery vessels. Immunohistochemistry was adopted to detect α-SMA, PCNA, GSK-3β, and β-catenin proteins in femoral artery tissue. The CCK-8 test and wound healing assay were employed to analyze the effect of AAS on proliferation and migration of vascular smooth muscle cells (VSMCs) cultured in vitro. Western blotting (WB) and polymerase chain reaction (PCR) assays were used to evaluate the molecular mechanism. AAS reduced the stenosis of blood vessels and the protein expressions of α-SMA, PCNA, GSK-3β, and β-catenin compared to the model group. In addition, AAS (0-15 μg/mL) effectively inhibited the proliferation and migration of VSMCs. Moreover, the results of WB and PCR showed that AAS could inhibit the activation of β-catenin induced by 15% FBS and significantly decrease the expression levels of Wnt3α, Dvl-1, GSK-3β, β-catenin, and cyclin D1 in the upstream and downstream of the pathway. AAS could effectively inhibit the proliferation and migration of neointima after vascular injury in rats by regulating the Wnt/β-catenin signaling pathway.

Funder

Open Subject of the Key Laboratory of Basic and Applied Research of Guangxi Zhuang Medicine Recipe

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3