Influence of Salts on the Adsorption of Lysozyme on a Mixed-Mode Resin

Author:

Kreusser Jannette1ORCID,Jirasek Fabian1ORCID,Hasse Hans1ORCID

Affiliation:

1. Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, Kaiserslautern, Germany

Abstract

Mixed-mode chromatography (MMC), which combines features of ion exchange chromatography (IEC) and hydrophobic interaction chromatography (HIC), is an interesting method for protein separation and purification. The design of MMC processes is challenging as adsorption equilibria are influenced by many parameters, including ionic strength and the presence of different salts in solution. Systematic studies on the influence of those parameters in MMC are rare. Therefore, in the present work, the influence of four salts, namely, sodium chloride, sodium sulfate, ammonium chloride, and ammonium sulfate, on the adsorption of lysozyme on the mixed-mode resin Toyopearl MX-Trp-650M at pH 7.0 and 25°C was studied systematically in equilibrium adsorption experiments for ionic strengths between 0 mM and 3000 mM. For all salts, a noticeable adsorption strength was observed over the entire range of studied ionic strengths. An exponential decay of the loading of the resin with increasing ionic strength was found until approx. 1000 mM. For higher ionic strengths, the loading was found to be practically independent of the ionic strength. At constant ionic strength, the highest lysozyme loadings were observed for ammonium sulfate, the lowest for sodium chloride. A mathematical model was developed that correctly describes the influence of the ionic strength as well as the influence of the studied salts. The model is the first that enables the prediction of adsorption isotherms of proteins on mixed-mode resins in a wide range of technically interesting conditions, accounting for the influence of the ionic strength and four salts of practical relevance.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3