Learning Air Traffic as Images: A Deep Convolutional Neural Network for Airspace Operation Complexity Evaluation

Author:

Xie Hua1,Zhang Minghua1ORCID,Ge Jiaming2,Dong Xinfang1,Chen Haiyan2

Affiliation:

1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. College of Computer Science and Technology/College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

A sector is a basic unit of airspace whose operation is managed by air traffic controllers. The operation complexity of a sector plays an important role in air traffic management system, such as airspace reconfiguration, air traffic flow management, and allocation of air traffic controller resources. Therefore, accurate evaluation of the sector operation complexity (SOC) is crucial. Considering there are numerous factors that can influence SOC, researchers have proposed several machine learning methods recently to evaluate SOC by mining the relationship between factors and complexity. However, existing studies rely on hand-crafted factors, which are computationally difficult, specialized background required, and may limit the evaluation performance of the model. To overcome these problems, this paper for the first time proposes an end-to-end SOC learning framework based on deep convolutional neural network (CNN) specifically for free of hand-crafted factors environment. A new data representation, i.e., multichannel traffic scenario image (MTSI), is proposed to represent the overall air traffic scenario. A MTSI is generated by splitting the airspace into a two-dimension grid map and filled with navigation information. Motivated by the applications of deep learning network, the specific CNN model is introduced to automatically extract high-level traffic features from MTSIs and learn the SOC pattern. Thus, the model input is determined by combining multiple image channels composed of air traffic information, which are used to describe the traffic scenario. The model output is SOC levels for the target sector. The experimental results using a real dataset from the Guangzhou airspace sector in China show that our model can effectively extract traffic complexity information from MTSIs and achieve promising performance than traditional machine learning methods. In practice, our work can be flexibly and conveniently applied to SOC evaluation without the additional calculation of hand-crafted factors.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of air traffic complexity through a dynamic complexity indicator and machine learning models;Journal of Air Transport Management;2024-08

2. Measuring the Complexity of Air Traffic Based on Complex Networks;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24

3. How Has the Concept of Air Traffic Complexity Evolved? Review and Analysis of the State of the Art of Air Traffic Complexity;Applied Sciences;2024-04-24

4. Analysis of patterns and trends in air traffic behaviour in different en-route atc sectors using a complexity indicator;Journal of Physics: Conference Series;2024-03-01

5. ISUAM: Intelligent and Safe UAM with Deep Reinforcement Learning;2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS);2023-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3