Affiliation:
1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
Abstract
Rough drawings provide artists with a simple and efficient way to express shapes and ideas. Artists frequently use sketches to highlight their envisioned curves, using several groups’ raw strokes. These rough sketches need enhancement to remove some subtle impurities and completely simplify curves over the sketched images. This research paper proposes using a fully convolutional network (FCNN) model to simplify rough raster drawings using deep learning. As input, the FCNN takes a sketch image of any size and automatically generates a high-quality simplified sketch image as output. Our model intuitively addresses the shortcomings in the rough sketch image, such as noises and unwanted background, as well as the low resolution of the rough sketch image. The FCNN model is trained by three raster image datasets, which are publicly available online. This paper demonstrates the efficiency and effectiveness of using deep learning in cleaning and improving the roughly drawn image in an automatic way. For evaluating the results, the mean squared error (MSE) metric was used. From experimental results, it was observed that an enhanced FCNN model reported better accuracy, reducing the prediction error by 0.08 percent for simplifying the rough sketch compared to the existing methods.
Funder
National Natural Science Foundation of China
Subject
Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献