Theoretical Study of the Structural, Optoelectronic, and Reactivity Properties of N-[5′-Methyl-3′-Isoxasolyl]-N-[(E)-1-(-2-)]Methylidene] Amine and Some of Its Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ Complexes for OLED and OFET Applications

Author:

Tendongmo Hilaire1ORCID,Tasheh Stanley Numbonui1ORCID,Tamafo Didier Aymard Fouegue2ORCID,Bine Fritzgerald Kogge1ORCID,Numbonui Ghogomu Julius13ORCID

Affiliation:

1. Research Unit of Noxious Chemistry and Environmental Engineering, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon

2. Department of Chemistry, Higher Teacher Training College Bertoua, University of Bertoua, P.O. Box 652, Bertoua, Cameroon

3. Department of Chemistry, Faculty of Science, The University of Bamenda, P.O. Box 39, Bambili, Bamenda, Cameroon

Abstract

Herein, we report the structural, electronic, and charge transfer properties of N-[5′-methyl-3′-isoxasolyl]-N-[(E)-1-(-2-thiophene)] methylidene] amine (L) and its Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ complexes (dubbed A, B, C, D, and E, respectively) using the density functional theory (DFT). All molecules investigated were optimized at the BP86/def2-TZVP/RI level of theory. Single point energy calculations were carried out at the M06-D3ZERO/def2-TZVP/RIJCOSX level of theory. Reorganization energies of the hole and electron (λh and λe) and the charge transfer mobilities of the electron and hole (μe and μh) have been computed and reported. The λe and λh values vary in the order D > E > A > B > C > L and E > A > D > L > C > B, respectively, while μe and μh vary in the order B > C > L > A > E > D and C > B > A > L > E > D, respectively. μh of B (39.5401 cm2·V−1S−1) and C (366.4740 cm2·V−1s−1) is remarkably large, suggesting their application in organic light-emitting diode (OLED) and organic field-effect transistor (OFET) technologies. Electron excitation analysis based on time-dependent (TD)-DFT calculations revealed that charge transfer excitations may significantly affect charge transfer mobilities. Based on charge transfer mobility results, B and C are outstanding and are promising molecules for the manufacture of electron and hole-transport precursor materials for the construction of OLED and OFET devices as compared to L. The results also show that L and all its complexes interestingly have higher third-order NLO activity than those of para-nitroaniline, a prototypical NLO molecule.

Funder

University of Dschang

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3