Arbutin Inhibited Heat Stress-Induced Apoptosis and Promoted Proliferation and Migration of Heat-Injured Dermal Fibroblasts and Keratinocytes by Activating PI3K/AKT Signaling Pathway

Author:

Zhu Shugang1ORCID,Yang Zhen2ORCID,Kong Lili3ORCID,Kong Lijun2ORCID,Zhang Yuezhi2ORCID

Affiliation:

1. Department of Burn and Plastic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Shandong, China

2. Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China

3. Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Shandong, China

Abstract

Objective. Studies have shown that arbutin has antioxidant and anti-inflammatory activities, which makes it suitable for treating skin wounds. We designed this study to investigate the effect of arbutin on heat-induced apoptosis, proliferation, and migration of dermal fibroblasts and keratinocytes and to explore the molecular mechanism. Methods. In vitro, HaCAT and dermal fibroblast (DFL) cells were cultured and used to establish a heat stress-injured skin cell model. We investigated the effects of arbutin on apoptosis, proliferation, and migration of HaCAT and DFL cells after heat stress injury. We then used immunoblotting to detect the expression of p-PI3K, PI3K, p-AKT, and AKT proteins for studying the underlying mechanisms and used a PI3K/AKT inhibitor (LY294002) to verify the efficacy of arbutin in HaCAT and DFL cells with heat stress injury. Results. Arbutin strongly inhibited heat stress-induced apoptosis, proliferation inhibition, and migration inhibition of HaCAT and DFL cells in vitro. Our results also showed that arbutin strongly decreased the ratio of Bax/Bcl2 protein expression and PCNA protein expression in HaCAT and DFL cells after treatment with heat stress. Furthermore, we also found that arbutin significantly increased the ratio of p-PI3K/PI3K and p-AKT/AKT protein expression, and LY294002 markedly reversed the effect of arbutin on heat stress-induced apoptosis, proliferation inhibition, and migration inhibition of HaCAT and DFL cells. Conclusion. Our finding indicated that arbutin inhibited heat stress-induced apoptosis and promoted proliferation and migration of heat-injured dermal fibroblasts and epidermal cells by activating the PI3K/AKT signaling pathway, suggesting that arbutin may provide an alternative therapeutic approach for the treatment of skin injury.

Funder

Medical and Health Science and Technology Development Project of Shandong Province

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Reference42 articles.

1. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring

2. Burn wound healing and treatment: review and advancements

3. Burns and Scalds;R. Poulos;International Encyclopedia of Public Health,2017

4. Epidemiology of burns and scalds in children presenting to the emergency department of a regional burns unit: a 7-year retrospective study;B. C. Elisabeth;Burns & Trauma,2016

5. Epidemiology and outcome analysis of scalds in children caused by “guo lian kang”: An 11-year review in a burn center in China

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3