Epiretinal Amniotic Membrane Influences the Cellular Behavior of Profibrotic Dedifferentiated Cells of Proliferative Vitreoretinopathy In Vitro

Author:

Hillenmayer Anna1ORCID,Strehle Laura D.1ORCID,Hilterhaus Christina1ORCID,Ohlmann Andreas2ORCID,Wertheimer Christian M.1ORCID,Wolf Armin1ORCID

Affiliation:

1. Department of Ophthalmology, University of Ulm, Prittwitzstr. 43, Ulm 89075, Germany

2. Department of Ophthalmology, Ludwig-Maximilians University, Mathildenstr. 8, Munich 80336, Germany

Abstract

Proliferative vitreoretinopathy (PVR) as a rare fibrotic ocular disease is the main reason for failure of retinal detachment surgery and a reduced prognosis following surgery. Amniotic membrane (AM) is a versatile surgical tool for tissue stabilization, antifibrotic properties, and regeneration. Initial clinical case studies now demonstrated intravitreal tolerance as well as good anatomical and functional results for degenerative retinal diseases. Due to its diverse wound healing properties, AM could have promoting, suppressive, or no effects on PVR. To illuminate the potential of epiretinal AM transplantation in complex retinal detachment cases, we investigated its influence on human primary PVR (hPVR) cells in vitro. In our cell culture study, hPVR cells were isolated from surgically removed PVR membranes. Following incubation with AM for 48 h, AM-incubated hPVR showed significantly reduced proliferation (BrdU-ELISA; p < 0.001 ), migration (Boyden chamber, scratch assay; p  = 0.003 and p < 0.001 ), and cell adhesion ( p  = 0.005). Collagen contraction was nearly unaffected ( p  = 0.04), and toxicity (histone-complexed DNA ELISA, WST-1 assay, and life/dead staining) was excluded. Next, immunofluorescence showed a myofibroblastic phenotype with reduced expression of fibrosis markers in AM-incubated cells, which was confirmed by Western blot analysis. In the proteomics assay, AM significantly regulated proteins by a more than 2-fold increase in expression which were related to the cytoskeleton, lipid metabolism, cell-matrix contraction, and protein folding. In conclusion, this in vitro work suggests no induction of fibrosis and other key steps in the pathogenesis of PVR through AM but rather inhibiting properties of profibrotic cell behavior, making it a possible candidate for suppression of PVR. Further clinical studies are necessary to evaluate the therapeutic relevance.

Funder

Projekt DEAL

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3