Ferulic Acid Mitigates Growth and Invasion of Esophageal Squamous Cell Carcinoma through Inducing Ferroptotic Cell Death

Author:

Cao Yu1,Zhang Hong1,Tang Jianming1,Wang Rui1ORCID

Affiliation:

1. Department of Thoracic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China

Abstract

Objective. Ferroptosis is an iron- and ROS-dependent form of cell death initiated by lipid peroxidation. The rapidly developing study of ferroptosis has facilitated its application in cancer therapeutics. The current study is aimed at investigating the functional property of ferulic acid (FA, a phenolic acid substance) on inducing ferroptosis in antiesophageal squamous cell carcinoma (ESCC). Methods. ESCC cells were administrated with gradient doses of FA or with ferroptosis inhibitor deferoxamine. Cellular growth was measured with CCK-8 and colony formation experiments. LDH, caspase-3, MDA, SOD, GSH, and iron were assayed with corresponding kits. Apoptotic level was evaluated through Annexin V-FITC apoptosis staining, with migration and invasion utilizing Transwell assays. Through quantitative RT-PCR, angiogenesis-relevant genes VEGFA and PDGFB were detected. ROS generation was measured via DCFH-DA probe. Immunoblotting was conducted for monitoring ACSL4, SLC7A11, HO-1, and GPX4. Results. FA administration observably mitigated cellular viability and colony formation capacity and motivated LDH release, caspase-3 activity, and apoptosis in EC-1 and TE-4 cells. In addition, migration and invasion together with angiogenesis of ESCC cells were restraint by FA. FA exposure led to the increase of MDA content, ROS production, and iron load as well as the reduction of SOD activity and GSH content. Also, FA augmented the activities of ACSL4 and HO-1, with lessening SLC7A11 and GPX4. Nonetheless, deferoxamine restrained the effect of FA on ESCC ferroptosis. Conclusion. Altogether, FA may act as a ferroptosis inducer and thus attenuates cell growth and invasion of ESCC, which boosts the clinical application of FA in ESCC therapeutics.

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3