The White Matter Functional Abnormalities in Patients with Transient Ischemic Attack: A Reinforcement Learning Approach

Author:

Ma Huibin12ORCID,Xie Zhou1ORCID,Huang Lina3ORCID,Gao Yanyan45ORCID,Zhan Linlin6ORCID,Hu Su45ORCID,Zhang Jiaxi45ORCID,Ding Qingguo3ORCID

Affiliation:

1. School of Information and Electronics Technology, Jiamusi University, Jiamusi, China

2. Integrated Medical School, Jiamusi University, Jiamusi, China

3. Department of Radiology, Changshu No.2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China

4. School of Teacher Education, Zhejiang Normal University, Jinhua, China

5. Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China

6. Faculty of Western Languages, Heilongjiang University, Heilongjiang 150080, China

Abstract

Background. Transient ischemic attack (TIA) is a known risk factor for stroke. Abnormal alterations in the low-frequency range of the gray matter (GM) of the brain have been studied in patients with TIA. However, whether there are abnormal neural activities in the low-frequency range of the white matter (WM) in patients with TIA remains unknown. The current study applied two resting-state metrics to explore functional abnormalities in the low-frequency range of WM in patients with TIA. Furthermore, a reinforcement learning method was used to investigate whether altered WM function could be a diagnostic indicator of TIA. Methods. We enrolled 48 patients with TIA and 41 age- and sex-matched healthy controls (HCs). Resting-state functional magnetic resonance imaging (rs-fMRI) and clinical/physiological/biochemical data were collected from each participant. We compared the group differences between patients with TIA and HCs in the low-frequency range of WM using two resting-state metrics: amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF). The altered ALFF and fALFF values were defined as features of the reinforcement learning method involving a Q -learning algorithm. Results. Compared with HCs, patients with TIA showed decreased ALFF in the right cingulate gyrus/right superior longitudinal fasciculus/left superior corona radiata and decreased fALFF in the right cerebral peduncle/right cingulate gyrus/middle cerebellar peduncle. Based on these two rs-fMRI metrics, an optimal Q -learning model was obtained with an accuracy of 82.02%, sensitivity of 85.42%, specificity of 78.05%, precision of 82.00%, and area under the curve (AUC) of 0.87. Conclusion. The present study revealed abnormal WM functional alterations in the low-frequency range in patients with TIA. These results support the role of WM functional neural activity as a potential neuromarker in classifying patients with TIA and offer novel insights into the underlying mechanisms in patients with TIA from the perspective of WM function.

Funder

Youth Science and Technology Plan of Soochow Science and Technology Bureau and Soochow Health Planning Commission

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3