Lanzhang Granules Ameliorate Nonalcoholic Fatty Liver Disease by Regulating the PPARα Signaling Pathway

Author:

Huang Ping1ORCID,Yang Lili1ORCID,Liu Yang12ORCID,Jiang Yuwei1ORCID,Li Yiping1ORCID,Chen Zhiwei1ORCID,Song Haiyan1ORCID,Zheng Peiyong1ORCID

Affiliation:

1. Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China

2. Teaching Experiment Center, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China

Abstract

Background. There is still a lack of effective therapeutic drugs for nonalcoholic fatty liver disease (NAFLD) to date. In this study, we applied mouse model experiments to clarify the effect of Chinese herbal medicine “Lanzhang Granules (LZG)” on NAFLD and further explore the potential mechanism to provide an alternative method for NAFLD treatment. Methods. Male C57BL/6J mice were fed with a high-fat diet (HFD) for twenty-two weeks to induce the NAFLD model. LZG intervention was then performed by gavage daily for another eight weeks. At the end of the treatment, serum and liver tissues were collected. Serum biochemical indexes, insulin levels, and liver histopathology were measured to assess the effect of LZG on NAFLD. The liver tissues were then analyzed by RNA sequence for differentially expressed genes and signaling pathways. Results were further analyzed by Protein-Protein Interaction (PPI) networks between the LZG and model groups. The selected different genes and signaling pathways were further verified by RT-PCR and Western blot analysis. Moreover, alpha mouse liver 12 (AML12) cells with lipid accumulation induced by fatty acid were treated with LZG, Fenofibrate (PPARα agonist), or Gw6471 (PPARα antagonist) to confirm the potential pharmacological mechanism. Results. LZG was found to downregulate liver weight, body weight, liver index, and serum levels of ALT, AST, and serum lipid in HFD-induced NAFLD mice. HE and Oil Red O staining showed the improvement of hepatic steatosis and inflammatory infiltration in the mice with LZG treatment. The homeostasis model assessment-insulin resistance (HOMA-IR) index indicated that LZG improved the insulin resistance of NAFLD mice. The RNA sequencing and PPI analysis confirmed the role of LZG in lipid metabolism regulation and identified the peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway as one of the major underlying mechanisms. Western blot and RT-PCR results verified the regulatory effect of LZG on the PPARα pathway, including the upregulation of PPARα, acyl-coenzyme A oxidase 1 (ACOX1), and enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase (EHHADH) and the downregulation of TNFα. In vitro experiments showed the effect of LZG in improving lipid accumulation and cell viability in AML12 cells induced by fatty acids, which were alleviated by Gw6471 coincubation. Gw6471could also reverse the transcription of PPAR target genes ACOX1 and EHHADH, which were upregulated by LZG treatment. Conclusion. LZG can improve NAFLD in mice or cell models. A major underlying mechanism may be the regulation of the PPARα signaling pathway to improve lipid metabolism and inhibit the inflammatory response. This study will help to promote the clinical application of LZG for the treatment of NAFLD.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3