Antioxidant Molecules Isolated from Edible Prostrate Knotweed: Rational Derivatization to Produce More Potent Molecules

Author:

Mahnashi Mater H.1ORCID,Alyami Bandar A.1,Alqahtani Yahya S.1,Alqarni Ali O.1,Jan Muhammad Saeed2ORCID,Hussain Fida2,Zafar Rehman3,Rashid Umer4ORCID,Abbas Muhammad5,Tariq Muhammad6ORCID,Sadiq Abdul7ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia

2. Department of Pharmacy, University of Swabi, KP, Pakistan

3. Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan

4. Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan

5. Department of Pharmacy, Abdul Wali Khan University Mardan, 23200 Mardan, KP, Pakistan

6. Department PCB, Rokhan University, Jalalabad, Nangrahar, Afghanistan

7. Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan

Abstract

Prostrate knotweed also called Polygonum aviculare is an important edible plant. The polygonum is majorly known for the phenolics and antioxidants. The antioxidants combat the excessive free radicals within the body. The excessive free radicals are implicated in various other diseases like diabetes, Alzheimer’s, and inflammation. This study was aimed at exploring the antioxidant bioactives and their derivatizations to produce new molecules with advanced pharmacological features. We have isolated six compounds (1–6) from Polygonum aviculare. Furthermore, rational-based chemical derivatives for compound 5 have been formed for the management of diabetes, Alzheimer’s, and inflammation. In preliminary antioxidant studies, all the isolated compounds (1–6) showed potential results against DPPH and ABTS free radicals. Based on the IC50 and chemical nature of the compounds, compound 5 was subjected to derivatization. Keeping the phenolic part of compound 5 unaffected, hydroxy succinimide (5A) and thiazolidinedione (5B) were synthesized. The compound 5A was found to be a potent inhibitor of AChE, BChE, COX-1, COX-2, 5-LOX, and DPPH giving IC50 values of 10.60, 15.10, 13.91, 1.08, 0.71, and 1.05 μM, respectively. The COX-2 selectivity of compound 5A was found at 12.9. The compound 5B was found to be a potent multitarget antidiabetic agent giving IC50 values of 15.34, 21.83, 53.28, and 1.94 μM against α-glucosidase, α-amylase, protein tyrosine phosphatase 1B, and DPPH. Docking studies were performed to manipulate the binding interactions. The docking pose of all the tested compounds was found to have increased binding affinity against all tested targets that supported the in vitro results. Our results showed that Polygonum aviculare is a rich source of antioxidant compounds. The two new derivatives have enhanced pharmacological features to treat diabetes, inflammation, and Alzheimer’s disease.

Funder

Higher Education Commission, Pakistan

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3