Convolutional Neural Networks to Facilitate the Continuous Recognition of Arabic Speech with Independent Speakers

Author:

Sayed Sally A.1ORCID,Ahmed Abdel Azeem Abul Seoud Rania2,Abdel Naby Howida Y.1

Affiliation:

1. Department of Computer Science, Faculty of Computers & Artificial Intelligence, Fayoum University, El Fayoum 63514, Egypt

2. Department of Electrical Engineering, Faculty of Engineering, Fayoum University, El Fayoum 63514, Egypt

Abstract

Automatic speech recognition (ASR) is a field of research that focuses on the ability of computers to process and interpret speech feedback from humans and to provide the highest degree of accuracy in recognition. Speech is one of the simplest ways to convey a message in a basic context, and ASR refers to the ability of machines to process and accept speech data from humans with the greatest degree of accuracy. As the human-to-machine interface continues to evolve, speech recognition is expected to become increasingly important. However, the Arabic language has distinct features that set it apart from other languages, such as the dialect and the pronunciation of words. Until now, insufficient attention has been devoted to continuous Arabic speech recognition research for independent speakers with a limited database. This research proposed two techniques for the recognition of Arabic speech. The first uses a combination of convolutional neural network (CNN) and long short-term memory (LSTM) encoders, and an attention-based decoder, and the second is based on the Sphinx-4 recognizer, which includes pocket sphinx, base sphinx, and sphinx train, with various types and number of features to be extracted (filter bank and mel frequency cepstral coefficients (MFCC)) based on the CMU Sphinx tool, which generates a language model for different sentences spoken by different speakers. These approaches were tested on a dataset containing 7 hours of spoken Arabic from 11 Arab countries, covering the Levant, Gulf, and African regions, which make up the Arab world, and achieved promising results. CNN-LSTM achieved a word error rate (WER) of 3.63% using 120 features for filter bank and 4.04% WER using 39 features for MFCC, respectively, while the Sphinx-4 recognizer technique achieved 8.17% WER and an accuracy of 91.83% using 25 features for MFCC and 8 Gaussian mixtures, respectively, when tested on the same benchmark dataset.

Publisher

Hindawi Limited

Reference47 articles.

1. Deep Learning Methods for Arabic Autoencoder Speech Recognition System for Electro-Larynx Device

2. Investigating the effects of gender, dialect, and training size on the performance of Arabic speech recognition

3. Morphology-based language modeling for arabic speech recognition

4. Investigation Arabic speech recognition using CMU sphinx system;H. Satori;The International Arab Journal of Information Technology,2009

5. Advances in dialectal Arabic speech recognition: a study using twitter to improve egyptian asr;A. Ali

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3