mTORC2 Activation Mediated by Mesenchymal Stem Cell-Secreted Hepatocyte Growth Factors for the Recovery of Lipopolysaccharide-Induced Vascular Endothelial Barrier

Author:

Meng Shan-Shan1ORCID,Guo Feng-Mei1,Huang Li-Li1,Huang Ying-Zi1,Xie Jian-Feng1,Yang Cong-Shan1,Qiu Hai-Bo1ORCID,Yang Yi1ORCID

Affiliation:

1. Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China

Abstract

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is characterized by pulmonary microvascular endothelial barrier dysfunction. Mesenchymal stem cell-secreted hepatocyte growth factor (HGF) has positive effects of lipopolysaccharide- (LPS-) induced pulmonary endothelial barrier. Studies have exhibited the mammalian TORC1 (mTORC1) signaling is of potent angiogenesis effects. The mTOR protein kinase has two distinct multiprotein complexes mTORC1 and mTORC2 that regulate different branches of the mTOR network. However, detailed mTORC2 mechanisms of HGF protective effects remain poorly defined. Therefore, the aim of this study was to determine whether mTORC2 mediated protective effects of MSC-secreted HGF against LPS-induced pulmonary microvascular endothelial barrier dysfunction activated like mTORC1 activation. We introduced MSC-PMVEC coculture transwell system and recombinant murine HGF on LPS-induced endothelial cell barrier dysfunction in vitro and then explored potential mechanisms by lentivirus vector-mediated HGF, mTORC1 (raptor), and mTORC2 (rictor) gene knockdown modification. Endothelial paracellular and transcellular permeability, adherent junction protein (VE-Cadherin), cell proliferation, apoptosis, and mTOR-associated proteins were tested. These revealed that HGF could promote quick reestablishment of adherent junction VE-cadherin and decrease endothelial paracellular and transcellular permeability during LSP-induced endothelial dysfunction with the involvement of mTORC2 (rictor) and mTORC1 (raptor) pathways. Raptor and rictor knockdown in LPS-induced PMEVECs with stimulation of HGF increased apoptosis ratio, activated Cleaved-Caspase-3 expression, and downregulated cell proliferation. Moreover, mTORC2/Akt but not mTORC2/PKC had significance on HGF endothelial protective effects. Taken together, these highlight activation mTORC2 pathway could also contribute to vascular endothelial barrier recovery by MSC-secreted HGF in LPS stimulation.

Funder

Jiangsu Entrepreneurship and Innovation Doctors

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3