PPAR-γ Activation Alleviates Osteoarthritis through Both the Nrf2/NLRP3 and PGC-1α/Δψm Pathways by Inhibiting Pyroptosis

Author:

Feng Zhencheng1,Huang Qiuxiang2,Zhang Xingliang34ORCID,Xu Pengfei5,Li Siming6ORCID,Ma Dongli3ORCID,Meng Qingqi6ORCID

Affiliation:

1. Department of Orthopedics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 51022, China

2. Department of Respiratory Medicine, Guangzhou Twelfth People’s Hospital, Guangzhou 510620, China

3. Department of Respiratory Medicine, Institute of Pediatrics, Shenzhen Children’s Hospital, Shenzhen 518038, China

4. Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China

5. Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, Ulm 89081, Germany

6. Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China

Abstract

Osteoarthritis (OA) is a common degenerative joint disease with a gradually increasing morbidity in the aging and obese population. Emerging evidence has implicated pyroptosis in the etiology of OA and it may be recognized as a therapeutic target in OA. We have previously reported regarding another disease that peroxisome proliferator-activated receptor gamma (PPAR-γ) activation exerts an anti-inflammatory effect by suppressing the nucleotide-binding and oligomerization domain-like receptor containing protein (NLRP) 3 inflammasome. However, the relationship between PPAR-γ and NLRP3-mediated pyroptosis in OA cartilage and its underlying mechanisms is fully unclear. In this study, we found that the level of NLRP3-mediated pyroptosis in severe lateral femoral condyle cartilage wear in the knee of an OA patient was significantly higher than that in the mild lateral femoral condyle cartilage wear areas. Moreover, in lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-induced primary chondrocytes and knee OA rat models, we demonstrated that activation of PPAR-γ by pioglitazone (Piog) attenuated LPS/ATP-induced chondrocyte pyroptosis and arthritis. These effects were partially counteracted by either blocking the nuclear factor erythroid-2-related factor (Nrf2)/NLRP3 or PGC1-α/Δψm signaling pathway. Simultaneous depression of these two signaling pathways can completely abrogate the protective effects of Piog on OA and chondrocytes. Taken together, Piog protects OA cartilage against pyroptosis-induced damage by simultaneously activating both the Nrf2/NLRP3 and PGC-1α/Δψm pathways, which enhances antioxidative and anti-inflammatory responses as well as mitochondrial biogenesis. Therefore, Piog may be a promising agent for human OA cartilage damage in future clinical treatments.

Funder

Shenzhen Science and Technology Program

Publisher

Hindawi Limited

Subject

Pharmacology (medical),Drug Discovery

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3