Dynamic Stability of Cylindrical Shells under Moving Loads by Applying Advanced Controlling Techniques Part I—Using Periodic Stiffeners

Author:

Eldalil Khaled M. Saadeldin1,Baz Amr M. S.2

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Tanta University, Sperbay, Tanta, Egypt

2. Department of Mechanical Engineering, University of Maryland, 2137 Eng. Bldg., College Park MD 20742, USA

Abstract

The load acting on a cylindrical shell, with added periodic stiffeners, under a transient pressure pulse propelling a pullet (gun case) has been experimentally studied. This study is based on two modes of velocities, the first is subcritical mode and the second is supercritical mode. The stiffeners are added to the gun tube of an experimental gun facility, of 14 mm bore diameter. The radial strains are measured by using high-frequency strain gage system in phase with a laser beam detection system. Time-resolved strain measurement of the wall response is obtained and both precursor and transverse hoop strains have been resolved. The time domain analysis has been done using “wavelet transform package” in order to determine the frequency domain modes of vibrations and detect the critical frequency mode. A complete comparison of the dynamic behavior of the shell tube before and after adding periodic stiffeners has been done, which indicated that a significant damping effect reaches values between 61.5 and 38% for subcritical and critical modes. The critical frequency of the stiffened shell is increased, so the supercritical mode is changed to subcritical mode. The amplification and dispersion factors are determined and constructed; there is a reduction in the corresponding speed frequencies by about 10%. Also the radial-bending vibrations and tube muzzle motions are detected at muzzle velocity ratio of 0.99%, the results indicated that there is a significant improvement in increasing the number of rounds per second by about 36% and increasing the pointing precision by about 47%.

Funder

Army Research Office

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3