N-Acetyltransferase 10 Enhances Doxorubicin Resistance in Human Hepatocellular Carcinoma Cell Lines by Promoting the Epithelial-to-Mesenchymal Transition

Author:

Zhang Xiuming1ORCID,Chen Jiang2,Jiang Shi2,He Shilin2,Bai Yanfeng1,Zhu Linghua2,Ma Rui3ORCID,Liang Xiao2ORCID

Affiliation:

1. Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China

2. Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China

3. Department of Surgery, Zhejiang University Hospital, Zhejiang University, Hangzhou, Zhejiang 310027, China

Abstract

Background. N-Acetyltransferase 10 (NAT10) has been reported to be expressed at high levels in hepatocellular carcinoma (HCC); however, its role in chemoresistance is unclear. This study is aimed at investigating whether NAT10 regulates the epithelial-mesenchymal transition (EMT) and chemoresistance in HCC. Methods. HCC cell lines (Huh-7, Bel-7402, SNU387, and SNU449) were treated with remodelin, an inhibitor of NAT10, or transfected with small inhibitory RNAs (siRNAs) targeting NAT10 or Twist. The EMT was induced by hypoxia. The CCK-8 assay was used to quantify cell viability, the EdU incorporation assay to assess cell proliferation. siRNA knockdown efficiency and epithelial/mesenchymal marker expression were assessed by western blotting. Results. Knockdown of NAT10 using siRNA or inhibition of NAT10 using remodelin increased the sensitivity of HCC cell lines to doxorubicin; similar effects were observed in cells transfected with the Twist siRNA. Inhibition of NAT10 using remodelin also reversed the ability of doxorubicin to induce the EMT in HCC cells. Furthermore, inhibiting NAT10 reversed the hypoxia-induced EMT. Finally, we confirmed that combining doxorubicin with remodelin delayed tumor growth and reduced tumor cell proliferation in a mouse xenograft model of HCC. Conclusions. NAT10 may contribute to chemoresistance in HCC by regulating the EMT. The mechanism by which NAT10 regulates the EMT and doxorubicin sensitivity in HCC cells merits further investigation.

Funder

Medical Science and Technology Project of Zhejiang Province

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3