Effect of Astragalus Polysaccharides on Cardiac Dysfunction in db/db Mice with Respect to Oxidant Stress

Author:

Chen Wei1ORCID,Sun Qilin1,Ju Jing1,Chen Wenjie1,Zhao Xuelan1,Zhang Yu1ORCID,Yang Yehong2ORCID

Affiliation:

1. Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai 200040, China

2. Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai 200040, China

Abstract

Objective. Oxidant stress plays an important role in the development of diabetic cardiomyopathy. Previously we reported that Astragalus polysaccharides (APS) rescued heart dysfunction and cardinal pathological abnormalities in diabetic mice. In the current study, we determined whether the effect of APS on diabetic cardiomyopathy was associated with its impact on oxidant stress. Methods. Db/db diabetic mice were employed and administered with APS. The hematodynamics, cardiac ultra-structure, apoptosis, and ROS formation of myocardium were assessed. The cardiac protein expression of apoptosis target genes (Bax, Bcl-2, and caspase-3) and oxidation target genes (Gpx, SOD2, t/p-JNK, catalase, t/p-p38 MAPK, and t/p-ERK) were evaluated, respectively. Results. APS therapy improved hematodynamics and cardinal ultra-structure with reduced apoptosis and ROS formation in db/db hearts. In addition, APS therapy inhibited the protein expression of apoptosis target genes (Bax, Bcl-2, and caspase-3) and regulated the protein expression of oxidation target genes (enhancing Gpx, SOD2, and catalase, while reducing t/p-JNK, t/p-ERK, and t/p-p38 MAPK) in db/db hearts. Conclusion. Our findings suggest that APS has benefits in diabetic cardiomyopathy, which may be partly associated with its impact on cardiac oxidant stress.

Funder

Chinese State Natural Science Funds Commission

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3