Salidroside Reduces Cell Mobility via NF-κB and MAPK Signaling in LPS-Induced BV2 Microglial Cells

Author:

Hu Haixia12,Li Zuanfang12,Zhu Xiaoqin12,Lin Ruhui12,Chen Lidian3

Affiliation:

1. Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Huatuo Road, Minhou Shangjie, Fuzhou, Fujian 350108, China

2. Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Huatuo Road, Minhou Shangjie, Fuzhou, Fujian 350108, China

3. College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, 1 Huatuo Road, Minhou Shangjie, Fuzhou, Fujian 350108, China

Abstract

The unregulated activation of microglia following stroke results in the production of toxic factors that propagate secondary neuronal injury. Salidroside has been shown to exhibit protective effects against neuronal death induced by different insults. However, the molecular mechanisms responsible for the anti-inflammatory activity of salidroside have not been elucidated clearly in microglia. In the present study, we investigated the molecular mechanism underlying inhibiting LPS-stimulated BV2 microglial cell mobility of salidroside. The protective effect of salidroside was investigated in microglial BV2 cell, subjected to stretch injury. Moreover, transwell migration assay demonstrated that salidroside significantly reduced cell motility. Our results also indicated that salidroside suppressed LPS-induced chemokines production in a dose-dependent manner, without causing cytotoxicity in BV2 microglial cells. Moreover, salidroside suppressed LPS-induced activation of nuclear factor kappa B (NF-κB) by blocking degradation of IκBαand phosphorylation of MAPK (p38, JNK, ERK1/2), which resulted in inhibition of chemokine expression. These results suggest that salidroside possesses a potent suppressive effect on cell migration of BV2 microglia and this compound may offer substantial therapeutic potential for treatment of ischemic strokes that are accompanied by microglial activation.

Funder

Natural Science Foundation of Fujian Province

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3