Integrated Network Pharmacology and Gut Microbiota Analysis to Explore the Mechanism of Sijunzi Decoction Involved in Alleviating Airway Inflammation in a Mouse Model of Asthma

Author:

Jia Wenqing1ORCID,Xu Chengling1ORCID,Zhao Tong1ORCID,Fan Qiuyang1ORCID,Qiao Bo2,Wu Yueying3ORCID,Yuan Jiali4ORCID,Chen Jing1ORCID

Affiliation:

1. School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China

2. School of Chinese Medical Science, Hunan University of Chinese Medicine, Changsha, Hunan, China

3. College of First Clinical Medical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China

4. Yunnan Key Laboratory of Molecular Biology of Traditional Chinese Medicine, Kunming, Yunnan, China

Abstract

Background. Asthma is a chronic inflammatory disease of the airways with recurrent attacks, which seriously affects the patients’ quality of life and even threatens their lives. The disease can even threaten the lives of patients. Sijunzi decoction (SJZD), a classical Chinese medicine formula with a long history of administration, is a basic formula used for the treatment of asthma and demonstrates remarkable efficacy. However, the underlying mechanism has not been elucidated. Materials and Methods. We aimed to integrate network pharmacology and intestinal flora sequencing analysis to study the mechanism of SJZD in the treatment of allergic asthmatic mice. The active compounds of SJZD and their asthma-related targets were predicted by various databases. We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to identify potentially relevant pathways for target genes. Furthermore, the active compound-target and target-signaling pathway network maps were constructed by using Cytoscape 3.8.2. These results were combined with those of the intestinal flora sequencing analysis to study the influence of SJZD on airway inflammation in allergic asthmatic mice. Result. We obtained 137 active compounds from SJZD and associated them with 1445 asthma-related targets acquired from the databases. A total of 109 common targets were identified. We visualized active compound-target and target-signaling pathway network maps. The pathological analysis and inflammation score results suggested that SJZD could alleviate airway inflammation in asthmatic mice. Sequencing analysis of intestinal flora showed that SJZD could increase the relevant abundance of beneficial bacterial genus and maintain the balance of the intestinal flora. The core toll-like receptor (TLR) signaling pathway was identified based on network pharmacology analysis, and the important role TLRs play in intestinal flora and organismal immunity was also recognized. The analysis of the correlation between environmental factors and intestinal flora revealed that beneficial bacterial genera were negatively correlated with TLR2 and positively correlated with the TLR7 expression. Furthermore, they were positively correlated with IFN-γ and IL-10 levels and negatively correlated with IL-4 and IL-17 levels. Conclusion. SJZD alleviated the airway inflammation state in asthmatic mice. The findings suggest that increasing the relevant abundance of beneficial intestinal bacteria in mice with asthma, regulating intestinal flora, interfering with the level of TLR2 and TLR7 expression to adjust the secretion of inflammatory factors, and alleviating asthmatic airway inflammation may be the possible mechanism involved in the treatment of asthma by SJZD, providing a basis for further studies on SJZD.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3