Exosomes Secreted from CXCR4 Overexpressing Mesenchymal Stem Cells Promote Cardioprotection via Akt Signaling Pathway following Myocardial Infarction

Author:

Kang Kai1,Ma Ruilian12,Cai Wenfeng1,Huang Wei1,Paul Christian1,Liang Jialiang1,Wang Yuhua1,Zhao Tiejun3,Kim Ha Won1,Xu Meifeng1,Millard Ronald W.4,Wen Zhili5,Wang Yigang1

Affiliation:

1. Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA

2. Department of Cardiology, The People’s Hospital of Sanya, Sanya, Hainan 572000, China

3. Department of Urinary Surgery, Xining City Hospital, Qinghai 810000, China

4. Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA

5. Infection Hospital of Nanchang University, Nanchang, Jiangxi 330002, China

Abstract

Background and Objective.Exosomes secreted from mesenchymal stem cells (MSC) have demonstrated cardioprotective effects. This study examined the role of exosomes derived from MSC overexpressing CXCR4 for recovery of cardiac functions after myocardial infarction (MI).Methods. In vitro, exosomes from MSC transduced with lentiviral CXCR4 (ExoCR4) encoding a silencing sequence or null vector were isolated and characterized by transmission electron microscopy and dynamic light scattering. Gene expression was then analyzed by qPCR and Western blotting. Cytoprotective effects on cardiomyocytes were evaluated and effects of exosomes on angiogenesis analyzed.In vivo, an exosome-pretreated MSC-sheet was implanted into a region of scarred myocardium in a rat MI model. Angiogenesis, infarct size, and cardiac functions were then analyzed.Results. In vitro, ExoCR4significantly upregulatedIGF-1αand pAkt levels and downregulated active caspase 3 levelin cardiomyocytes. ExoCR4also enhanced VEGF expression and vessel formation. However, effects of ExoCR4were abolished by an Akt inhibitor or CXCR4 knockdown.In vivo, ExoCR4treated MSC-sheet implantation promoted cardiac functional restoration by increasing angiogenesis, reducing infarct size, and improving cardiac remodeling.Conclusions.This study reveals a novel role of exosomes derived from MSCCR4and highlights a new mechanism of intercellular mediation of stem cells for MI treatment.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3