Metal Hydrides for Sustainable Hydrogen Storage: A Review

Author:

Nemukula E.ORCID,Mtshali C. B.ORCID,Nemangwele F.ORCID

Abstract

Storing hydrogen in metals has received much attention due to the advantages of this approach for safely storing. It is a promising method of storing hydrogen and eliminates the challenges associated with storing hydrogen gas at high pressure, which includes material durability, tank safety, and overall weight. Much work has been done for the past decade to bring this approach closer to wide‐scale application. However, much experimental research is needed to improve the volumetric and gravimetric capacity, hydrogen adsorption/desorption kinetics, material life cycle, and reaction thermodynamics of potential materials for hydrogen storage. Other important properties to consider are transient performance, the regeneration process of spent storage materials, effective adsorption temperature associated with activation energy, induced pore sizes in materials, increasing pore volume and surface area, and materials densification. In recent years, this solid‐state storage has progressed at conditions close to normal atmospheric pressure and temperature, with metal hydrides (MHs) emerging as a promising option. Their high storage density per unit volume, volume storage capabilities, and their ability to reverse the process while maintaining stability have qualified the MHs for low‐pressure storage and fulfilling the hydrogen storing requirements. However, understanding the principles of kinetics and thermodynamics is crucial for understanding the reactions of MHs as they absorb and release hydrogen. This review evaluates the current hydrogen storage methods, the different types of MHs, their thermodynamics and kinetics, as well as their applications and challenges. For the advancement of further research in this field of study, suggestions for future work and studies are also provided.

Publisher

Wiley

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3