Abstract
Storing hydrogen in metals has received much attention due to the advantages of this approach for safely storing. It is a promising method of storing hydrogen and eliminates the challenges associated with storing hydrogen gas at high pressure, which includes material durability, tank safety, and overall weight. Much work has been done for the past decade to bring this approach closer to wide‐scale application. However, much experimental research is needed to improve the volumetric and gravimetric capacity, hydrogen adsorption/desorption kinetics, material life cycle, and reaction thermodynamics of potential materials for hydrogen storage. Other important properties to consider are transient performance, the regeneration process of spent storage materials, effective adsorption temperature associated with activation energy, induced pore sizes in materials, increasing pore volume and surface area, and materials densification. In recent years, this solid‐state storage has progressed at conditions close to normal atmospheric pressure and temperature, with metal hydrides (MHs) emerging as a promising option. Their high storage density per unit volume, volume storage capabilities, and their ability to reverse the process while maintaining stability have qualified the MHs for low‐pressure storage and fulfilling the hydrogen storing requirements. However, understanding the principles of kinetics and thermodynamics is crucial for understanding the reactions of MHs as they absorb and release hydrogen. This review evaluates the current hydrogen storage methods, the different types of MHs, their thermodynamics and kinetics, as well as their applications and challenges. For the advancement of further research in this field of study, suggestions for future work and studies are also provided.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献