Modified Model Predictive Control for Coordinated Signals along an Arterial under Relaxing Assumptions

Author:

Zhang Kun1ORCID,Xu Hongfeng1ORCID,Pan Baofeng1,Zheng Qiming1ORCID,Chen Hongjin1

Affiliation:

1. Department of Transportation and Logistics, Dalian University of Technology, Dalian 116024, China

Abstract

This paper proposes modified model predictive control (MMPC) for coordinated signals, aiming to enhance a model’s fidelity to the realistic traffic environment by relaxing typical assumptions. We focus on the arterial, where every intersection is equipped with a dual-ring-barrier signal controller that complies with the standards of the National Electric Manufacturers Association. MMPC employs the store-and-forward model to describe traffic flow, thereby transforming the signal control problem into a model-based rolling-horizon optimization problem, in which the prediction horizon is composed of several future sample intervals, commonly equal to the cycle length. A radar detector is used to collect vehicle data upstream of the stop line at every sampling instant. The optimization problem is solved to minimize the number of vehicles within the prediction horizon, and the next timing plan is determined based on the optimization results. Constraints are added and modified in order to incorporate the typical relaxed assumptions in the optimization process. For this purpose, MMPC introduces a transition-free ring-barrier structure, vehicle distribution ratio, and percent arrival before the end of green. Simulation results indicate that coordination can be maintained by MMPC without the need for transitions, and the estimation of current and future traffic states can be improved with the assistance of modified constraints. Compared with benchmark techniques, MMPC offers superior vehicle progression for coordinated movement and significant improvements in delays, number of stops, and total travel time from a system-wide perspective, with an acceptable small increase in runtime.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3