The Knockdown of Nrf2 Suppressed Tumor Growth and Increased the Sensitivity to Lenvatinib in Anaplastic Thyroid Cancer

Author:

Gong Zhongqin1,Xue Lingbin1,Wei Minghui2,Liu Zhimin3,Vlantis Alexander C.1,van Hasselt C. Andrew1,Chan Jason Y. K.1,Li Dongcai4,Zeng Xianhai4,Tong Michael C. F.1ORCID,Chen George G.15ORCID

Affiliation:

1. Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong

2. Department of Head & Neck Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, China

3. Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, China

4. Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China

5. Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China

Abstract

Papillary thyroid cancer can dedifferentiate into a much more aggressive form of thyroid cancer, namely into anaplastic thyroid cancer. Nrf2 is commonly activated in papillary thyroid cancer, whereas its role in anaplastic thyroid cancer has not been fully explored. In this study, we used two cell lines and an animal model to examine the function of Nrf2 in anaplastic thyroid cancer. The role of Nrf2 in anaplastic thyroid cancer was investigated by a series of functional studies in two anaplastic thyroid cancer cell lines, FRO and KAT-18, and further confirmed with an in vivo study. The impact of Nrf2 on the sensitivity of anaplastic thyroid cancer cells to lenvatinib was also investigated to evaluate its potential clinical implication. We found that the expression of Nrf2 was significantly higher in anaplastic thyroid cancer cell line cells than in papillary thyroid cancer cells or normal control cells. Knockdown of Nrf2 in anaplastic thyroid cancer cells inhibited their viability and clonogenicity, reduced their migration and invasion ability in vitro, and suppressed their tumorigenicity in vivo. Mechanistically, knockdown of Nrf2 decreased the expression of Notch1. Lastly, knockdown of Nrf2 increased the sensitivity of anaplastic thyroid cancer cells to lenvatinib. As knockdown of Nrf2 reduced the metastatic and invasive ability of anaplastic thyroid cancer cells by inhibiting the Notch 1 signaling pathway and increased the cancer cell sensitivity to lenvatinib, Nrf2 could be a promising therapeutic target for patients with anaplastic thyroid cancer.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3