Prediction of the Potential Host of Peste Des Petits Ruminants Virus by the Least Common Amino Acid Pattern in SLAM Receptor

Author:

Fan Xin12,Kannan Villalan Arivizhivendhan12,Hu YeZhi12,Wu XiaoDong3ORCID,Wang HaoNing4ORCID,Wang XiaoLong12ORCID

Affiliation:

1. College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China

2. Key Laboratory for Wildlife Diseases and Bio-Security Management of Heilongjiang Province, Harbin 150040, Heilongjiang Province, China

3. China Animal Health and Epidemiology Center, Qingdao 266032, Shandong Province, China

4. School of Geography and Tourism, Harbin University, Harbin 150086, Heilongjiang Province, China

Abstract

Peste-des-Petits Ruminants Virus (PPRV) causes a highly contagious and severe infectious disease known as Peste-des-Petits Ruminants (PPR), resulting in significant mortality in both domestic and wild ruminants. An in-depth understanding of the molecular relationship between PPRV and susceptible hosts is essential for the prevention of PPR. The signaling lymphocytic-activation molecule (SLAM) acts as a key receptor in susceptible host species, mediating interactions with PPRV and triggering PPR in ruminants. This study offers an in-depth analysis of PPRV-susceptible host species as well as the identified SLAM amino acid sequences to date. Investigation reveals that nine families—Bovidae, Camelidae, Cervidae, Elephantidae, Suidae, Felidae, Canidae, Muridae, and Ceratopogonidae—have been affected by PPRV infection. Furthermore, a bioinformatics-based approach was proposed to screen the least common amino acid patterns (LCAP) in important SLAM receptor regions of known PPRV-susceptible species. Research findings reveal that 14 least common amino acid sites (LCAS) in SLAM amino acid sequences (I61, I63, S60, S70, K76, K78, I79, S81, L82, E123, N125, S127, V128, and F131) exhibit a prevalent similarity to LCAP across all known susceptible species. Comparative analysis of these 14 LCAP with SLAM nucleotide sequences from unknown susceptible ruminants to identify species at heightened risk of PPRV. In the result, 48 species from 20 different families across six orders were at potential risk of being infected with PPRV. This exploration suggests the feasibility of assessing potential hosts at high risk of PPRV infection through the LCAS screening technique. Moreover, it offers a means to anticipate and issue warnings regarding the likelihood of interspecies transmission. In conclusion, this study integrates molecular biology and bioinformatics, shedding light on PPRV infection dynamics and paving the way for predictive strategies to prevent the spread of this devastating disease among ruminant populations.

Funder

Heilongjiang Touyan Innovation Team Program for Forest Ecology and Conservation

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3