PU‐GNN: A Positive‐Unlabeled Learning Method for Polypharmacy Side‐Effects Detection Based on Graph Neural Networks

Author:

Keshavarz Abedin,Lakizadeh AmirORCID

Abstract

The simultaneous use of multiple drugs, known as polypharmacy, heightens the risks of harmful side effects due to drug‐drug interactions. Predicting these interactions is crucial in drug research due to the rising prevalence of polypharmacy. Researchers employ a graphical structure to model these interactions, representing drugs and side effects as nodes and their interactions as edges. This creates a multipartite graph that encompasses various interactions such as protein‐protein interactions, drug‐target interactions, and side effects of polypharmacy. In this study, a method named PU‐GNN, based on graph neural networks, is introduced to predict drug side effects. The proposed method involves three main steps: (1) drug features extraction using a novel biclustering algorithm, (2) reducing uncertainity in input data using a positive‐unlabeled learning algorithm, and (3) prediction of drug’s polypharmacies by utilizing a graph neural network. Performance evaluation using 5‐fold cross‐validation reveals that PU‐GNN surpasses other methods, achieving high scores of 0.977, 0.96, and 0.949 in the AUPR, AUC, and F1 measures, respectively.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3