Finite-Element Analysis of the Effect of Utilizing Various Material Assemblies in “All on Four” on the Stresses on Mandible Bone and Prosthetic Parts

Author:

Shash Yomna H.1ORCID,El-Wakad Mohamed T.2,Eldosoky Mohamed A. A.1,Dohiem Mohamed M.3

Affiliation:

1. Department of Biomedical Engineering, Helwan University, Cairo, Egypt

2. Faculty of Engineering & Technology, Future University Egypt, Cairo, Egypt

3. Department of Prosthodontics, Zagazig University, Zagazig, Egypt

Abstract

Background. Fixed prostheses often utilize the “All-on-four” technique, in which four implants are inserted into the jaw bone, and a framework supports them. Titanium is usually used in the fabrication of “All-on-four” parts, due to its superior mechanical properties; however, it has drawbacks such as aesthetic impairment, casting issues, stress shielding, and incompatibility with imaging techniques. These drawbacks have motivated researchers to find alternative materials such as polymers. Recently, the new polymeric material PEEK has a major role in most areas of dentistry, and therefore, it can represent an alternative biomaterial to overcome the drawbacks of titanium. The density of bone is expected to influence the choice of “All-on-four” materials. Purpose. This research applied finite-element investigations to evaluate the stresses on bone tissues and prosthetic parts in “All on four,” utilizing three assemblies of materials, in normal and low bone densities. These assemblies were titanium (Type 1), titanium/PEEK (Type 2), and PEEK (Type 3). Materials and Methods. A 3D Mandibular model was constructed with a fixed prosthesis, and three assemblies of materials were stimulated, under 300 N unilateral force. The von Mises stresses were computed for the prosthetic parts and mucosa, while the maximum and minimum principal stresses/strains were computed for bone tissues due to their brittle and ductile properties. Moreover, the displacements of implants were extracted to check the prosthesis stability. Results. Type 2 and Type 3 minimized the stresses on frameworks, implants, abutments, and bone tissues, however, increased the mucosal stress, in comparison to Type 1. In the low-density model, Type 3 was recommended to reduce the stresses/strains on bone tissues and decrease the implant displacement, avoiding bone failure and increasing prosthesis stability. Conclusions. The bone density influenced the choice of “All-on-four” assembly. Moreover, further research on PEEK implants and abutments is required in the future.

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3