Concurrent Aerobic and Resistance Training Has Anti-Inflammatory Effects and Increases Both Plasma and Leukocyte Levels of IGF-1 in Late Middle-Aged Type 2 Diabetic Patients

Author:

Annibalini Giosuè1ORCID,Lucertini Francesco1ORCID,Agostini Deborah1,Vallorani Luciana1,Gioacchini Annamaria1,Barbieri Elena1ORCID,Guescini Michele1,Casadei Lucia1,Passalia Annunziata1,Del Sal Marta1,Piccoli Giovanni1,Andreani Mauro2,Federici Ario1,Stocchi Vilberto1

Affiliation:

1. Department of Biomolecular Sciences, Division of Exercise and Health Sciences, University of Urbino Carlo Bo, Urbino, Italy

2. Department of Diabetology and Endocrinology, Asur Marche Area Vasta 1, S. Maria della Misericordia Hospital, Urbino, Italy

Abstract

Type 2 diabetes (T2D) is an age-related chronic disease associated with metabolic dysregulation, chronic inflammation, and activation of peripheral blood mononuclear cells (PBMC). The aim of this study was to assess the effects of a concurrent exercise training program on inflammatory status and metabolic parameters of T2D patients. Sixteen male patients (age range 55–70) were randomly assigned to an intervention group (n=8), which underwent a concurrent aerobic and resistance training program (3 times a week; 16 weeks), or to a control group, which followed physicians’ usual diabetes care advices. Training intervention significantly improved patients’ body composition, blood pressure, total cholesterol, and overall fitness level. After training, plasma levels of adipokines leptin (−33.9%) and RBP4 (−21.3%), and proinflammatory markers IL-6 (−25.3%), TNF-α (−19.8%) and MCP-1 (−15.3%) decreased, whereas anabolic hormone IGF-1 level increased (+16.4%). All improvements were significantly greater than those of control patients. Plasma proteomic profile of exercised patients showed a reduction of immunoglobulin K light chain and fibrinogen as well. Training also induced a modulation of IL-6, IGF-1, and IGFBP-3 mRNAs in the PBMCs. These findings confirm that concurrent aerobic and resistance training improves T2D-related metabolic abnormalities and has the potential to reduce the deleterious health effects of diabetes-related inflammation.

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3