Seismic Response of a Bridge Pile Foundation during a Shaking Table Test

Author:

Dong Yunxiu12ORCID,Feng Zhongju1,He Jingbin1ORCID,Chen Huiyun1,Jiang Guan1,Yin Honghua3

Affiliation:

1. Highway School, Chang’an University, Xi’an, Shaanxi 710064, China

2. School of Civil Engineering, Longdong University, Qingyang, Gansu 745000, China

3. Jinan Highway Administration, Jinan, Shandong 250000, China

Abstract

Puqian Bridge is located in a quake-prone area in an 8-degree seismic fortification intensity zone, and the design of the peak ground motion is the highest grade worldwide. Nevertheless, the seismic design of the pile foundation has not been evaluated with regard to earthquake damage and the seismic issues of the pile foundation are particularly noticeable. We conducted a large-scale shaking table test (STT) to determine the dynamic characteristic of the bridge pile foundation. An artificial mass model was used to determine the mechanism of the bridge pile-soil interaction, and the peak ground acceleration range of 0.15 g–0.60 g (g is gravity acceleration) was selected as the input seismic intensity. The results indicated that the peak acceleration decreased from the top to the bottom of the bridge pile and the acceleration amplification factor decreased with the increase in seismic intensity. When the seismic intensity is greater than 0.50 g, the acceleration amplification factor at the top of the pile stabilizes at 1.32. The bedrock surface had a relatively small influence on the amplification of the seismic wave, whereas the overburden had a marked influence on the amplification of the seismic wave and filtering effect. Damage to the pile foundation was observed at 0.50 g seismic intensity. When the seismic intensity was greater than 0.50 g, the fundamental frequency of the pile foundation decreased slowly and tended to stabilize at 0.87 Hz. The bending moment was larger at the junction of the pile and cap, the soft-hard soil interface, and the bedrock surface, where cracks easily occurred. These positions should be focused on during the design of pile foundations in meizoseismal areas.

Funder

Transport Department of Hainan Provincial, China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3