A Study of the Brain Network Connectivity in Visual-Word Pairing Associative Learning and Episodic Memory Reactivating Task

Author:

Zhang Mingxin1ORCID,Duan Feng1ORCID,Wang Shan1ORCID,Zhang Kai2,Chen Xuyi3,Sun Zhe4

Affiliation:

1. College of Artificial Intelligence, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China

2. Department of Surgery, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 88 Changling Road, Xiqing District, Tianjin 300381, China

3. Brain Center, The Hospital of Pingjin, No. 220 Chenglin Road, Hedong District, Tianjin 300162, China

4. Computational Engineering Applications Unit, Head Office for Information Systems and Cybersecurity, RIKEN, Wako-Shi, Japan

Abstract

Episodic memory allows a person to recall and mentally reexperience specific episodes from one’s personal past. Studies of episodic memory are of great significance for the diagnosis and the exploration of the mechanism of memory generation. Most of the current studies focus on certain brain regions and pay less attention to the interrelationship between multiple brain regions. To explore the interrelationship in the brain network, we use an open fMRI dataset to construct the brain functional connectivity and effective connectivity network. We establish a binary directed network of the memory when it is reactivated. The binary directed network shows that the occipital lobe and parietal lobe have the most causal connections. The number of edges starting from the superior parietal lobule is the highest, with 49 edges, and 31 of which are connected to the occipital cortex. This means that the interaction between the superior parietal lobule and the occipital lobe plays the most important role in episodic memory, and the superior parietal lobule plays a more causal role in causality. In addition, memory regions such as the precuneus and fusiform also have some edges. The results show that the posterior parietal cortex plays an important role of hub node in the episodic memory network. From the brain network model, more information can be obtained, which is conducive to exploring the brain’s changing pattern in the whole memory process.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3