Antimicrobial Activity of Isoniazid in Conjugation with Surface-Modified Magnetic Nanoparticles against Mycobacterium tuberculosis and Nonmycobacterial Microorganisms

Author:

Zargarnezhad Sarah1ORCID,Gholami Ahmad2ORCID,Khoshneviszadeh Mehdi34ORCID,Abootalebi Seyedeh Narjes5ORCID,Ghasemi Younes16ORCID

Affiliation:

1. Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

2. Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

3. Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran

4. Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

5. Division of Pediatric Intensive Care, Department of Pediatrics, Shiraz University of Medical Sciences, Shiraz, Iran

6. Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Isoniazid, the choice antitubercular agent, has only been employed against Mycobacterium tuberculosis. This study evaluated if the enzyme-mimetic activities of magnetic nanoparticles could accelerate the activation process of isoniazid against mycobacterial and, more importantly, non-mycobacterial microorganisms. First, magnetic nanoparticles were synthesized and coated by lipoamino acid; then, isoniazid was conjugated to synthesized nanoparticles. Antibacterial activities of nanoconjugated isoniazid were evaluated against Mycobacterium tuberculosis and four Gram-positive and Gram-negative nonmycobacterial strains through a microdilution broth process. Results showed that the required amount of isoniazid against Mycobacterium tuberculosis would decrease to 44.8% and 16.7% in conjugation with naked and surface-modified magnetic nanoparticles, respectively. Also, 32 μg/mL and 38 μg/mL of isoniazid in conjugation with naked and surface-modified nanoparticles, respectively, could prevent the growth of Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Hence, the vicinity of magnetic nanoparticles with isoniazid could declare promising aspects of isoniazid antibacterial capabilities.

Funder

Shiraz University of Medical Sciences

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3