Analytical Bayesian Copula‐Based Uncertainty Quantification (A‐BASIC‐UQ) Using Data with Missing Values in Structural Health Monitoring

Author:

Yuen Ka-VengORCID,Zhao Zi-Tong,Mu He-QingORCID,Shao Wei

Abstract

The presence of missing values is common in real‐world datasets, so modeling and uncertainty quantification (UQ) of incomplete datasets have gained increasing attention in various research areas, including structural health monitoring (SHM). However, modeling and UQ utilizing incomplete datasets are nontrivial tasks. On the other hand, prediction based on a set of incomplete measured input variables is also an important task, but most existing methods, which are discriminative models, do not possess this capability. Aiming to tackle these two challenges, we propose the two‐stage analytical Bayesian copula‐based uncertainty quantification (A‐BASIC‐UQ) using incomplete SHM data. In the modeling stage, the copula‐based multivariate joint probability density function (PDF) is modeled directly according to an incomplete dataset without imputation or disposal of any data points. For the univariate marginal PDF, using the measured (nonmissing) values of the corresponding random variable (RV), Bayesian model class selection is conducted to select the most suitable model class. For the Gaussian copula PDF, using the bivariate complete data points of entry‐by‐entry pairwise data, the optimal parameter vector is obtained from the estimation of the Pearson correlation coefficient. In the prediction stage, the analytical expressions of the predictive PDF, the predicted value and the credible region of the output variables are derived according to a set of incomplete measured input variables. The analytical expression of the predictive PDF is obtained based on the analytical operations on the auxiliary RVs and that of the predicted value and the credible region are obtained based on the analysis of multivariate Gaussian distribution. Therefore, the proposed method does not require numerical integration nor Monte Carlo simulation and does not suffer from computational burden even when there are many variables (say 4 or above). Examples using simulated data and real SHM data are presented to illustrate the capability of the proposed A‐BASIC‐UQ.

Funder

Universidade de Macau

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Pearl River S and T Nova Program of Guangzhou

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3