Fabrication and Characterization of Natural Rubber-Based Magnetorheological Elastomers at Large Strain for Base Isolators

Author:

Lee Chan Woo1ORCID,Kim In-Ho2ORCID,Jung Hyung-Jo2ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Korea Army Academy at Yeong-cheon, Yeong-cheon 38900, Republic of Korea

2. Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

Abstract

To withstand harsh conditions and have a moderate strength, it is desirable to use natural rubber for base isolators. In addition, previous studies have measured the magnetorheological (MR) effect under low-strain range, mostly within 10%. In the reality, it is necessary to evaluate the performance under large-strain range for base isolators. In this study, material properties of natural rubber-based MREs with various mixing ratios were evaluated under large-strain range (~100%). In the first step, MREs with various iron ratios were fabricated and evaluated to observe the MR effect according to the ratio and arrangement of iron powder. As a result, the highest MR effect (22.0% at 100% strain) and damping ratio (10.29%) were observed in the sample with 35% iron ratio, and the MR effect of the isotropic and the anisotropic MRE did not show significant difference under large-strain (50~100%). In the second step, MRE samples containing the optimum iron ratio (investigated in the first step) and various mixing ratios of carbon black and naphthenic oil were prepared. As a result, the MRE containing 60phr of carbon black and 40phr of naphthenic oil had the highest MR effect (33.8% at 100% strain). Compared to the case without additives, it showed an obvious improvement.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3