LncRNA TP73-AS1 Exacerbates the Non-Small-Cell Lung Cancer (NSCLC) Process via Regulating miR-125a-3p-Mediated ACTN4

Author:

Tong Yueyang1ORCID,Feng Zhemin1,Li Yaqian1,Yan Chenxi1,He Wenbo1,Chen Xueyuan1ORCID

Affiliation:

1. Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang, 126 Wenzhou Road, China

Abstract

Background. LncRNA TP73-AS1 has been revealed to exert a noteworthy impact on the occurrence and advancement of different cancers. In this study, we explored the function of TP73-AS1 in tumor growth, cell progression as well as the relevant molecular mechanism in non-small-cell lung cancer (NSCLC). Methods. QRT-PCR was employed to assess the expression of TP73-AS1, miR‐125a-3p, and actinin alpha 4 (ACTN4) in NSCLC cells. The biological effect of TP73-AS1 on NSCLC cells was assessed by cell transfection, CCK8, and transwell experiments. We further predicted the interaction among RNAs (TP73-AS1, miR-125a-3p, and ACTN4) through bioinformatics online tools and verified via luciferase reporter, RNA immunoprecipitation, and qRT-PCR assays. Xenograft models of SPC-A1 cells were conducted to test how TP73-AS1 regulates tumorigenesis. Western blot, as well as the immunohistochemistry (IHC) assays, was utilized to measure the expression levels. Functions of TP73-AS1 in NSCLC progression through the miR-125a-3p/ACTN4 axis were investigated by rescue experiments. Results. Knockdown of TP73-AS1 suppressed the growth and simultaneously attenuated the migration and invasion ability of NSCLC SPC-A1 and A549 cells. Bioinformatics and molecular mechanism assays demonstrated that TP73-AS1 could bind to miR-125a-3p/ACTN4 and regulate their expression. Moreover, the rescued‐function experiment demonstrated that suppressing miR-125a-3p or elevating ACTN4 turned around the suppression effect of sh-TP73-AS1 on NSCLC progression. TP73-AS1 inhibition could also inhibit the NSCLC tumor growth and correspondingly regulated the expression of miR-125a-3p and ACTN4 in the tumor xenograft model. Conclusion. The present study indicated that TP73-AS1 affects NSCLC progression through a new competitive RNA (ceRNA) regulatory network of miR-125a-3p/ACTN4, providing an underlying target for NSCLC treatment in the future.

Funder

Science Research Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Baicalin Relieves Airway Inflammation in COPD by Inhibiting miR-125a;Applied Biochemistry and Biotechnology;2023-09-01

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3