Sacubitril Valsartan Enhances Cardiac Function and Alleviates Myocardial Infarction in Rats through a SUV39H1/SPP1 Axis

Author:

Shen Jian-Fen1ORCID,Fan Zhong-Bao2ORCID,Wu Chun-Wei1ORCID,Qi Guo-Xian3ORCID,Cao Qiu-Yu1ORCID,Xu Feng1ORCID

Affiliation:

1. Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning, China

2. Department of Hepatobiliary Surgery, People's Hospital of China Medical University, Liaoning Provincial People's Hospital, Shenyang, 110016 Liaoning, China

3. Department of Geriatric Cardiology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning, China

Abstract

Sacubitril valsartan (lcz696) has been demonstrated as a substitute for angiotensin-converting enzyme inhibitors and angiotensin receptor blockers for the treatment of heart failure. This research is aimed at examining the effects of lcz696 and its target molecules on myocardial infarction (MI). A rat model of MI was induced by left anterior descending artery ligation and treated with lcz696. Lcz696 treatment significantly reduced cardiac injury and heart failure, restored the left ventricular fractional shortening and ejection fraction, and reduced oxidative stress and inflammatory responses in rat myocardium. By analyzing the heart failure-related GSE47495 dataset and performing gene ontology (GO) functional enrichment analysis, we obtained histone lysine methyltransferase SUV39H1 and secreted phosphoprotein 1 (SPP1) as two molecules implicated in the oxidative stress and inflammation processes. An elevation of SUV39H1 whereas a decline of SPP1 were detected in cardiac tissues after lcz696 treatment. Enrichments of SUV39H1 and H3K9me3 at the SPP1 promoter were identified by chromatin immunoprecipitation assay. SUV39H1 catalyzed H3K9me3 modification to suppress the expression of SPP1. Preconditioning of SUV39H1 silencing blocked the protective roles of lcz696, but SPP1 silencing alleviated the myocardial injury. In conclusion, this study demonstrates that lcz696 enhances cardiac function and alleviates MI in rats through a SUV39H1/SPP1 axis.

Funder

China International Medical Exchange Foundation

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3