Propofol Alleviates Apoptosis Induced by Chronic High Glucose Exposure via Regulation of HIF-1α in H9c2 Cells

Author:

Pu Jinjun12,Zhu Shun1,Zhou Dandan1,Zhao Lidong1,Yin Ming3ORCID,Wang Zejian3ORCID,Hong Jiang1ORCID

Affiliation:

1. Department of Internal and Emergency Medicine, Shanghai General Hospital (Originally Named Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China

2. Department of Emergency Medicine, Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China

3. School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China

Abstract

Background. The sedative anesthetic, propofol, is a cardioprotective agent for hyperglycemia-induced myocardial hypertrophy and dysfunction in rats. However, the specific protective mechanism has not been clarified. Methods and Results. In this experiment, we used H9c2 cells subjected to 22 mM glucose lasting for 72 hours as an in vitro model of cardiomyocyte injury by hyperglycemia and investigated the potential mechanism of propofol against hyperglycemic stress in cells. Propofol (5, 10, or 20 μM) was added to the cell cultures before and during the high glucose culture phases. Cell viability and levels of ROS were measured. The levels of proinflammatory cytokines were tested by ELISA. The levels of SIRT3, SOD2, PHD2, HIF-1α, Bcl-2, P53, and cleaved caspase-3 proteins were detected by western blotting. Our data showed that propofol attenuated high glucose-induced cell apoptosis accompanied by a decrease in the level of reactive oxygen species (ROS) and proinflammatory cytokines. Meanwhile, propofol decreased the apoptosis of H9c2 cells via increasing the expression of Bcl-2, SIRT3, SOD2, and PHD2 proteins and decreasing the expression of cleaved caspase-3, P53, and HIF-1α. Real-time PCR analysis showed that propofol did not significantly change the HIF-1α but increase PHD2 at mRNA level. HIF-1α silence significantly decreased apoptosis and inflammation in H9c2 cell during high glucose stress. Pretreatment of IOX2 (the inhibitor of PHD2) inhibited cell viability until the concentration reached 200 μM during high glucose stress. However, 50 μM TYP (the inhibitor of SIRT3) significantly inhibited cell viability during high glucose stress. Delayed IOX2 treatment for 6 hours significantly inhibited cell viability during high glucose stress. Conclusions. Propofol might alleviate cell apoptosis via SIRT3-HIF-1α axis during high glucose stress.

Funder

Shanghai Songjiang District Committee of Science and Technology

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3