Strategies for enhancing electrochemical CO<sub>2</sub> reduction to multi-carbon fuels on copper

Author:

Li Xin,Chen Yuxin,Zhan Xinyu,Xu Yiwen,Hao Leiduan,Xu Liang,Li Xueying,Umer Muhammad,Tan Xinyi,Han Buxing,Robertson Alex W.,Sun Zhenyu

Abstract

<p>Productively harnessing CO<sub>2</sub> as a reactant is of practical interest due to addressing the dual pressures of resource sustainability and environmental sustainability. Electrochemical CO<sub>2</sub> reduction (ECR) offers a promising approach for driving the chemical transformation of CO<sub>2</sub> by exploiting green renewably generated electricity at (near) room temperature and ambient pressure, facilitating a sustainable, low-carbon footprint future. In this work, we provide a comprehensive and timely review of the various avenues that have been developed to date to modulate product selectivity, stability, and efficiency toward C<sub>2+</sub> using Cu-based electrocatalysts. We discuss how the electrocatalyst structure can be effectively designed in order to boost performance. Special attention is paid to some of the critical intermediate species that shed light on CO<sub>2</sub> reduction paths. We will also discuss the application of in situ and operando spectroscopy, along with computational techniques, that help to improve our fundamental understanding of ECR. Finally, development opportunities and challenge in the conversion of CO<sub>2</sub> into multi-carbon fuels by Cu-based electrocatalysts are presented.</p>

Publisher

Innovation Press Co., Limited

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3