Improved Mathematical Models of Thermal Residual Stresses in Functionally Graded Adhesively Bonded Joints: A Critical Review

Author:

Apalak M. Kemal,Demirbas M. Didem

Abstract

Functionally graded material (FGM) concept has been applied successfully in order to improve/design heat transfer, electric and electronic conductivity, static and dynamic strengths of adhesive joints by reliving stress distributions in both adhesive and adherend materials. This new approach relies on tailoring material composition of adhesive and adherends along one or more coordinate directions. Thermal residual stresses in adhesive joints are a vital issue in terms of the joint strength. FGM concept also allows to relieve/control thermal residual stresses encountered in adhesive joints due to mismatches between coefficients of thermal expansion of adhesive and adherend materials. Mathematical models and solutions on the thermal residual stress analysis have been continuously improved. This paper reviews the current status of mathematical models, and offers an improved mathematical model and numerical solution method by considering two-dimensional thermal stress and deformation states of adhesively bonded bi-directional functionally graded clamped plates subjected to an in-plane heat flux along one of the ceramic edges. This mathematical model assumes the material properties of the functionally graded plates to vary with a power law along two in-plane directions and not through the plate thickness direction, in particular, considers the spatial derivatives of thermal and mechanical properties of the material, and enables the investigation of the effects of the bi-directional composition variations and spatial derivative terms on the displacement, strain and stress distributions. The heat conduction and Navier equations describing the twodimensional thermo-elastic problem are discretized using finite-difference method, and the set of linear equations are solved using the pseudo singular value method. The functionally graded plates relieve both stress and strain distributions and levels in the adhesive layer and in the plates even though the adhesive layer is still ungraded. The spatial derivatives of mechanical and thermal properties of the local material become more effective on the strain and stress distributions of the plates and adhesive layer. The model, disregarding these derivative terms, exhibits sensitivity to small changes in the compositional gradients (n, m) by adjusting the variations of ceramic volume fraction along the x - and y-directions, respectively, and instability in the calculation of stress and strain distributions and levels. However, the improved model with material derivatives, which considers the effects of these derivative terms, predicts stress and strain distributions and levels complying with changes in the compositional gradient exponents.

Publisher

Scrivener Publishing

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3