Homeostatic and early-recruited CD101− eosinophils suppress endotoxin-induced acute lung injury

Author:

Zhu Chen,Weng Qing-Yu,Zhou Ling-Ren,Cao Chao,Li Fei,Wu Yin-Fang,Wu Yan-Ping,Li Miao,Hu Yue,Shen Jia-Xin,Xiong Xue-Fang,Lan Fen,Xia Li-Xia,Zhang Bin,Zhang Hao,Huang Man,Ying Song-Min,Shen Hua-Hao,Chen Zhi-Hua,Li Wen

Abstract

IntroductionAcute lung injury (ALI) is a fatal but undertreated condition with severe neutrophilic inflammation, although little is known about the functions of eosinophils in the pathogenesis of ALI. Our objectives were to investigate the roles and molecular mechanisms of eosinophils in ALI.MethodsPulmonary eosinophils were identified by flow cytometry. Mice with abundant or deficient eosinophils were used. Cellularity of eosinophils and neutrophils in bronchoalveolar lavage fluid, inflammatory assessment, and survival rate were determined. Human samples were also used for validating experimental results.ResultsBlood eosinophils were increased in surviving patients with acute respiratory distress syndrome (ARDS) independent of corticosteroid usage. There existed homeostatic eosinophils in lung parenchyma in mice and these homeostatic eosinophils, originating from the bone marrow, were predominantly CD101. More CD101 eosinophils could be recruited earlier than lipopolysaccharide (LPS)-initiated neutrophilic inflammation. Loss of eosinophils augmented LPS-induced pulmonary injury. Homeostatic CD101 eosinophils ameliorated, while allergic CD101+ eosinophils exacerbated, the neutrophilic inflammation induced by LPS. Likewise, CD101 expression in eosinophils from ARDS patients did not differ from healthy subjects. Mechanistically, CD101 eosinophils exhibited higher levels of Alox15 and Protectin D1. Administration of Protectin D1 isomer attenuated the neutrophilic inflammation.ConclusionsCollectively, our findings identify an uncovered function of native CD101 eosinophils in suppressing neutrophilic lung inflammation and suggest a potential therapeutic target for ALI.

Funder

National Natural Science Foundation of China

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3