The mononuclear phagocyte system contributes to fibrosis in post-transplant obliterans bronchiolitis

Author:

Di Campli Maria-PiaORCID,Azouz Abdulkader,Assabban AssiyaORCID,Scaillet Jessika,Splittgerber Marion,Van Keymeulen Alexandra,Libert Frederick,Remmelink Myriam,Le Moine Alain,Lemaitre Philippe,Goriely StanislasORCID

Abstract

Bronchiolitis obliterans syndrome (BOS) is a fibrotic disease that is heavily responsible for the high mortality rates after lung transplantation. Myofibroblasts are primary effectors of this fibrotic process, but their origin is still debated. The purpose of this work was to identify the precursors of mesenchymal cells responsible for post-transplant airway fibro-obliteration.Lineage-tracing tools were used to track or deplete potential sources of myofibroblasts in the heterotopic tracheal transplantation model. Allografts were analysed by histology, confocal microscopy, flow cytometry or single-cell transcriptomic analysis. BOS explants were evaluated by histology and confocal microscopy.Myofibroblasts in the allografts were recipient-derived. When recipient mice were treated with tacrolimus, we observed rare epithelial-to-mesenchymal transition phenomena and an overall increase in donor-derived myofibroblasts (p=0.0467), but the proportion of these cells remained low (7%). Haematopoietic cells, and specifically the mononuclear phagocyte system, gave rise to the majority of myofibroblasts found in occluded airways. Ablation of Cx3cR1+ cells decreased fibro-obliteration (p=0.0151) and myofibroblast accumulation (p=0.0020). Single-cell RNA sequencing revealed similarities between myeloid-derived cells from allografts and both murine and human samples of lung fibrosis. Finally, myofibroblasts expressing the macrophage marker CD68 were increased in BOS explants when compared to controls (14.4% versus 8.5%, p=0.0249).Recipient-derived myeloid progenitors represent a clinically relevant source of mesenchymal cells infiltrating the airways after allogeneic transplantation. Therapies targeting the mononuclear phagocyte system could improve long-term outcomes after lung transplantation.

Funder

Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture

Fonds pour la chirurgie cardiaque

Fonds De La Recherche Scientifique - FNRS

Fonds Erasme

European Regional Development Fund

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3