Design and construction of artificial microbial consortia to enhance lignocellulosic biomass degradation

Author:

Vu Vi N.H.,Kohári-Farkas Csilla,Filep Róbert,Laszlovszky Gábor,Ban My Thi,Bujna Erika,Gupta Vijai Kumar,Nguyen Quang D.

Abstract

Cellulose-rich agricultural residues are promising renewable sources for producing various value-added products such as 2nd generation biofuels. However, the efficiency of the bioconversion process is not always satisfactory due to the slow and incomplete degradation of lignocellulosic biomass. An interesting approach would be using microbial communities with high lignocellulose-degrading ability for environmentally friendly pretreatment. This study focused on characterizing the degradation performance of bacteria, fungal, and yeast strains and designing and constructing different microbial consortia for solid-state treatment of wheat bran and wheat straw. The microbial consortia, namely BFY4 and BFY5, contained different bacteria, fungal, and yeast led to high ratios of sugar accumulation ranging from 3.21 to 3.5 with degradation rates over 33%, owing to more favorable hydrolytic enzyme activities and improved reducing sugar yield during the process. After 72 h, the highest FPase (0.213 IU/gds) and xylanase (7.588 IU/gds) activities were also detected in the wheat straw pretreated by BFY4 and BFY5, respectively, while CMCase activity peaked (0.928 IU/gds) when wheat bran was used as substrate. The amount of released glucose increased during the treatment process when the two substrates were used in the same ratio. Our results indicated that substrate composition also plays an important role in the degradation capacity of mixed cultures. These findings can be instrumental in advancing the primary knowledge required to apply such bioprocesses at the pilot scale.

Publisher

Alpha Creation Enterprise

Subject

Fuel Technology,Renewable Energy, Sustainability and the Environment,Biotechnology,Chemical Engineering (miscellaneous),Energy Engineering and Power Technology,Environmental Engineering,Waste Management and Disposal

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3