Output regulation for time–delayed Takagi–Sugeno fuzzy model with networked control system

Author:

ASLAM Muhammad Shamrooz1ORCID,MA Zhenhua2ORCID

Affiliation:

1. Guangxi University of Science and Technology

2. China University of Mining and Technology

Abstract

This article studies $H_{\infty}$ control problem based on the event--triggered scheme with time delays for the synchronization of an chaotic system represented by delayed Takagi--Sugeno models. Firstly, this method depending on two scenarios: a) Each local subsystem integrated that the delayed T-S fuzzy model for the same value of input matrices for the networked system and b) This is near steady-state zero-error diversification has to all be the same local subsystems. Generally, in the case of fuzzy regulation, these in lieu of generating the fuzzy regulator as a result of linear local controllers, circumstances were adjusted by addressing the issue of fuzzy regulation for the delayed Takagi--Sugeno models fuzzy model. Then, a delayed Takagi--Sugeno uses a fuzzy system to model the non--linear regulator. On the other hand, communication delays are a vital factor that cannot be ignored. To tackle the networked induced delay initially, author attempt to implement the event--triggered scheme for output regulation which reduce the cost of network transmission. By constructing a Lyapunov functional and making use of event--triggered method, some suitable circumstances that ensure asymptotic stability of $H_{\infty}$ performance index for the resulting model were derived. Additionally, as the variations of the aforementioned results, two scenarios were presented. Our developed approaches are demonstrated by a final example illustrating their superiority, usefulness and reliability.

Funder

Starting PhD fund

Publisher

Hacettepe University

Subject

Geometry and Topology,Statistics and Probability,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3