MICROSTRUCTURE AND HIGH-TEMPERATURE WEAR BEHAVIOR OF FE-BASED AMORPHOUS COATINGS BY LASER CLADDING

Author:

Xie Lu,Wang Yueming,Yang Jianlin,Li Chenlong,Han Xuhang,Huang Jie

Abstract

FeCrMoCB amorphous coatings were prepared on 316 stainless steel via an amorphous powder. Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) were used to analyze the microstructure, composition, and phase structure of the coatings. Hardness and friction wear testers were applied to investigate the microhardness and wear behavior of the coatings. Results show that the Cr23C6, Cr15Fe7C6 and Fe3Mo crystal phases appeared after laser cladding relative to the complete amorphous powder, and the amorphous phase fraction of the coating was calculated up to 68.4 % using the Verdon method. The coating exhibited a dominating adhesive wear mechanism under room temperature (RT) and transformed to a fatigue wear mechanism as wear test temperature increased to 600 °C. As the temperature was elevated from RT to 600 °C, the wear rate increased from 26 × 10–6 mm3/N·m to 79 × 10–6 mm3/N·m. The laser-cladded Fe-based amorphous coating exhibited much stronger wear performance than the 316 stainless steel, even the wear rate reached one third of that of steel.

Publisher

Institute of Metals and Technology

Subject

Metals and Alloys,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3